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Abstract 
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is also completely characterized as the union of associated principal DCSs. Examples of 
finite sets of deductively closed conditionals are exhibited including many, unlike 
Boolean algebra, which are finite and yet non-principal, that is, not generated by any 
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1. Introduction 

While uncertainty of events or propositions poses little conceptual difficulty 
for making deductions, the same cannot be said for uncertain conditional 
events or propositions. For instance, although there is some doubt whether a 
roll of an ordinary, six-sided die will turn up a number n less than 3, there is no 
doubt that if the number is less than 3, then it will also be less than 4. Thus the 
event "n < 3" implies the event "n < 4" no matter what the probabilities of 
these two events because the first event is a subset of the second event. That is 
Boolean deduction plain and simple. And the probability of the conclusion is at 
least as great as the probability of the premise. For two-valued (equally con- 
ditioned) propositions or events, B is deducible from A if and only if the in- 
stances of B include those of A. 

However when it comes time to deduce one conditional event from a second 
conditional event, the picture is not so clear. Unlike two-valued events or 
propositions, conditionals are inherently three-valued [16,17]. A conditional 
can be true, or false, or it can be inapplicable, that is, its premise can be false. A 
conditional has two components, not just one, and so deduction becomes much 
more complicated when uncertain conditionals are concerned. 

The search for appropriate deductive relations between conditionals leads to 
the following four elementary deductive relations between a premise condi- 
tional (a|b) and a conclusion conditional (c|d): 

(1) "b is a subset of d", 
(2) "a and b" is a subset of "c and d", 
(3) "a or not b" is a subset of "c or not d", and 
(4) "d is a subset of b". 

By choosing sub-collections of these four properties, 13 distinct deductive re- 
lations are determined. 

Although it has become standard in logic since the publication of the 
Principia Mathematica [31] to routinely reduce a conditional such as "if B, then 
A" to the non-conditional "either A or not B" - the so-called material con- 
ditional, this reduction is not adequate when the events or propositions arc 
allowed to have probabilities between 0 and 1. This inadequacy has been 
pointed out many times by various authors, among them Adams [4], Calabrese 
[8], and Lewis [26]. The unconditioned (or universally conditioned) proposition 
"A or not B" can easily have probability near 1 while the original conditional 
"if B, then A" has conditional probability near 0. (This problem does not arise 
when "if B, then A" and "A or not B" are considered wholly true and set equal 
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to the universal event for purposes of deduction and called the "material im- 
plication" of A by B.) 

Due to the so-called triviality result of Lewis [26], it seemed for a while that 
there was no way to resolve this discrepancy, and in fact there is none within 
the standard Boolean algebraic framework of propositions or events. Instead, 
one must expand the usual Boolean algebra of events (or propositions) to a 
new algebraic system of event fractions (a|b), ordered pairs of events (or 
propositions) allowing the usual "and" (conjunction), "or" (disjunction) and 
"not" (negation) operators, as well as the additional operator "given" (|). 

Adams [2-4] had early identified his three so-called "quasi-" operations on 
conditionals, called quasi merely because the conjunction did not always imply 
each of the component conditionals and because the disjunction was not 
always implied by each of the component conditionals. Adams passed over as 
unsuitable a fourth, "intuitively plausible" operation for iterated conditionals 
[4, p. 33], apparently because he did not make a distinction between a condi- 
tional and an implication. A conditional is not an implication; its a proposition 
or an event in a given context. 

Schay [32] defined two systems of conditionals, one using Adam's quasi- 
conjunction with a different disjunction and the other using quasi-disjunction 
with a different conjunction. Others too have identified some of the operations 
promoted here, including Sobocinski [28,35] in 1952, who chose the first three 
operations but a very different fourth operation, again meant as an implication. 
As mentioned by Gilio and Scozzafava [19], in 1985 Bruno and Gilio also 
defined a system using the quasi-disjunction operation with an alternative 
conjunction operation. 

In 1987 a complete algebraic development, but without deduction, was 
supplied by Calabrese [9] allowing uncertain conditional events or propositions 
to be combined in a way faithful to both conditional logic and conditional 
probability. The object (a|b) can represent "a in the context of b" for logical 
purposes and also have the conditional probability ^(a|b) = P(a and b)/P(b) 
when the conditional is uncertain. (Section 2.3 provides a careful motivation 
designed to convince skeptics of the correctness of the four chosen operations, 
and to provide an algebraic characterization of this system of conditional 
events.) 

Subsequently, Goodman and Nguyen published an equivalent formulation 
[20] but with different operations on the ordered pairs of events based on so- 
called "first principles" preservation of as many properties of Boolean 
algebra as possible. Since conditionals behave in non-Boolean ways, these 
operations have been hard to apply, although all this has served to highlight 
the overall algebraic development. 

Together with Walker, Goodman and Nguyen served as editors and con- 
tributors of a book [21] on conditionals to which the present author contributed 
a paper [11] on deduction with conditionals. These developments culminated in 
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the publication in December 1994 of a special issue of the IEEE Transactions of 
Systems, Man and Cybernetics edited by Dubois, Goodman, and Calabrese and 
devoted to conditional event algebra. As part of this special issue, Dubois and 
Prade [18], in a virtuoso performance, contrasted the three Goodman-Nguyen- 
Walker operations with the three Adams-Sobocinski-Calabrese operations and 
pointed out how these essential differences arise because of the two very different 
interpretations of the third truth value - "inapplicable" versus "unknown". 
Using the Adams-Sobocinski-Calabrese operations together with the "proba- 
bilistically monotonic" deductive relation previously identified in [10], Dubois 
and Prade also defined a conditional knowledge base and define monotonic de- 
duction from it by adapting Adam's methods to a non-probabilistic context. 
This development by Dubois and Prade is an important special case of the 
systems explored in this paper. 

Throughout these efforts, one important goal has been the ability in prac- 
tical situations to combine, deduce and infer using uncertain conditional in- 
formation without distorting that information. In this regard a large number of 
examples [14] have been developed and exposited demonstrating the plausi- 
bility and applicability of the author's development of conditional event al- 
gebra. This has also been corroborated by other researchers including Rodder 
[29] and Tyszkiewicz [15]. 

Nevertheless, when attempts were later made to write a computer program ' 
to actually perform these operations on even simple events, the inherent 
complexity of these situations became all too apparent. The computer program 
got badly bogged down. In retrospect this was not surprising since checking 
even a simple deduction between two compound Boolean events A = (ai or a2 

or a3 or a4 or ...) and B = (b( or b2 or b3 or b4 or ...), where the a's and b's are 
themselves Boolean events, requires one to check to see if each instance within 
each event a, of A is included in at least one event by of B. 

This kind of processing has long been recognized as important to logic and 
computation, having been formalized in [1,24,27,37]. (See, for instance [22], 
The Mixed Powerdomain, for a summary and tutorial.) 

The above expressions for A and B arise quite naturally in the so-called 
situation space for modeling practical problems: We typically describe a situ- 
ation by denning a finite number of variables V\,Vi,v%,... ,vn each having a 
finite number of possible values. Even if the variables are all two-valued, they 
give rise to 2" different possible complete assignments of values to the variables, 
and these are just the atoms of the Boolean algebra generated by the original 
variables. The events of the Boolean algebra generated by these atoms consist 

The Multi-Process Algebra Data tool (MuPADj environment developed at the University of 
Paderborn, Germany was used to implement the algebra of conditional propositions to produce the 
Conditional Proposition and Event Processor (CPEP). 
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of all possible disjunctions (unions) of these 2" atoms and the number of these 
events is 2 raised to the power 2". So just six initial two-valued variables 
generate a Boolean algebra with 264 different possible events. A specific event, 
A, will then typically be expressed as a disjunction of atoms or of subsumed 
events a(, a2, a3,..., a„. For instance, in a die roll the event of rolling neither 3 
nor 4 might be expressed as "<3" or ">4" instead of the longer so-called 
disjunctive normal form: "1" or "2" or "5" or "6". Even for a small number of 
variables, brute force computer processing becomes intractable before ever 
getting to conditionals or probabilities. 

Another important class of examples arises from standard track, files on 
detected objects produced by radar and other surveillance systems. These 
track files consist of records (sequences) of data fields including a time field. If 
the fields of a record are completely filled in, the record is atomic. These in- 
stances (completely filled-in records) are the atoms of the Boolean algebra 
of subsets of such database atoms under union, intersection and complemen- 
tation. 

A record with missing data in, say one field, can be characterized by the 
subset of all atomic records that have all but possibly that one field filled with 
the same values as the given record. In this way a general track file record 
(possibly having empty fields) is characterized by that subset of atomic records 
which can consistently complete it. Thus a partially complete record is just a 
proposition or event, a subset of atomic records. It follows from the above that 
a sequence (as new records arrive each scan of a sensor), or a collection of such 
partially complete track file records, must be a second-order predicate - a 
collection of propositions or events. 

Data records in general are usually incomplete and sometimes inconsistent. 
Thus a general theory of their temporal updating involves at least second-order 
predicates, subsets of subsets of completely filled data records. The number of 
such subsets becomes too large for practical computing purposes. So re- 
searchers [6,7,27,34] have sought a smaller but still adequately expressive col- 
lection of subsets and second-order predicates by which to approximate above 
and below in some non-deterministic sense any partially complete record. 
However, these efforts do not appear to have succeeded in producing a prac- 
tical computation method. 

An alternate approach to Bayesian computation now becoming better 
known utilizes the concept of information entropy [25,33], to defeat complexity 
by assuming (conditional) independence between variables describing a situa- 
tion unless some dependence is explicitly known or assumed. Utilizing this and 
subsequent developments, Rodder [29] and his colleagues at Fern University 
have constructed a very impressive interactive computer program, with acro- 
nym SPIRIT, that can quickly calculate the most likely probability distribution 
given initial conditional probabilities for some of the relevant conditional 
events. Professor Rodder has also shown [29,30J that his methods of calculation 
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are consistent with the author's algebra of conditionals and with the deductive 
relations of conditional event algebra. 

The focus here is to explore and further develop the theory of deductive 
relations (preorders) on conditionals including the deductively closed sets 
(DCSs) of conditionals that they generate. It should be possible to routinely 
deduce and infer with uncertain conditional information. 

Section 2 on Conditional Event Algebra lays out the algebraic development 
of conditionals including the four operations and then uses an indicator 
function representation of conditionals to provide justifications and motiva- 
tions for the choice of operations and a complete algebraic characterization. 
Section 3.1 defines the concept of an implication or deductive relation on 
conditionals and the notion of a DCS of conditionals with respect to an im- 
plication relation. In Section 3.2 several different implications are identified 
based on various' Boolean deduction formulas, which are no longer equivalent 
in the realm of conditionals. Equivalencies between them are exhibited and 
those remaining are organized into a hierarchy of deductive relations in Fig. 1 
of Theorem 3.2.10. Sections 3.3 and 3.4 are essentially new results describing 
how in general to determine the DCSs of a conditional event algebra with 
respect to the identified implication relations. Some non-elementary examples 
of DCSs end the section and illustrate how to generate many other non- 
elementary examples. This section ends with a solution of the famous pen- 
guin problem. Section 4 provides a compendium of all DCSs of the simplest 
conditional event algebras with respect to all of the identified deductive rela- 
tions. 

2. Conditional event algebra (CEA) 

Although George Boole, the recognized father of Boolean algebra, incor- 
porated fractions of propositions in his pioneering work [5], the parallel de- 
velopment of abstract algebra at the time had not proceeded far enough for 
Boole's immediate followers to make much sense of his far-seeing ideas about 
division of propositions in regard to conditioning. Consequently, those who 
pursued his research topics decided to close his system with just his logical 
counterparts to addition, multiplication and negation, and to call the result 
"Boolean" algebra. But Boole himself also had the division operation! Boole 
was explicitly trying to incorporate probability as well as logic into his system. 

Conditionals are to logic as fractions are to arithmetic, and the extension is 
no less dramatic. As the system of integer fractions extends the system of whole 

A full description of this entropy approach as applied to conditional event algebra and deduc- 
tion will be given in a separate paper- 
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numbers, so also does the system of conditionals (ordered pairs of proposi- 
tions) extend the underlying Boolean algebra of propositions or probabilistic 
events allowing the conditional probability F(a|b) to be the probability of the 
logical conditional (a|b). This algebra has been rigorously formulated in [9 13]. 
A brief review of this development follows. 

2.1. Formulation of the conditional event algebra (38\38) of a Boolean algebra 38 

Start with an initial Boolean algebra, 38, of propositions or events such as 
(1) all events generated by a surveillance track file or files, 
(2) the Boolean algebra generated by any finite or infinite set of proposi- 
tions, 
(3) the Boolean algebra of subsets of a probability sample space Q, or 
(4) {All 64 subsets of the six-element sample space {1, 2, 3, 4, 5, 6}}. 

The Boolean set operation "and" is represented by either n or A. The Boolean 
operation "or" is represented by U or V. "not" is represented by ' or ->. 

(08\38) or (38/38) will denote the set of ordered pairs, {(a|b) : a, b in 38}, 
called the set of conditionals, "a given b", of 38. The proposition or event 
"b" is called the condition, premise or antecedent and the proposition or 
event "a" is called the consequent or conclusion. 

Just as two Boolean propositions or events may be equivalent, that is, refer 
to the same set of occurrences, so also may two conditionals be equivalent. 
Analogously, two integer fractions may be equal but look different. 

Definition 2.1.1 (Equivalent conditionals). Two conditional statements (a|b) 
and (c|d) are equivalent (=) provided: 

(1) their conditions, b and d, are equivalent propositions or events, and 
(2) their conclusions, a and c, are equivalent when their common condition 
is true. In symbols, 

(a|b) = (c|d)    provided that b = d and ab = cd, 

where juxtaposition, "ab", denotes "a A b", that is, "a and b". 

In other words, two conditionals are equivalent when they have equivalent 
premises and their conclusions are equivalent assuming that common premise. 

This equivalence relation on conditionals implies that for all propositions a 
and b, 

(a|b) = (ab|b) 

and also that for all a e 36, (1|0) = (a|0) = (0|0). (1|0) is the "inapplicable" or 
"undefined" conditional and is denoted U. The Boolean 1 and 0 propositions 
are represented by (1|1) and (0|1), respectively. 
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Thus, in any instance a conditional (a|b) can have any one of three truth 
values: 

(a|b) is true if (a|b) = (1|1) = 1, i.e., if a is true and b is true 
(a|b) is false if (a|b) = (0|1) =0, i.e., if a is false and b is true, 
(a|b) is inapplicable if (a|b) = (1|0) = U, i.e., if b is false, 
Thus, (a|b) is true on a A b, false on a' A b, and inapplicable on b'. 
Note also that "not true" means "false or inapplicable"; "not false" means 

"true or inapplicable"; "not inapplicable" means "true or false". CEA pro- 
vides clear distinctions in terminology. For example, "if b, then a" is "not 
false" on the instances of a V b', but it is "true" on the smaller set of instances 
of a A b. No such distinction is available in Boolean algebra. 

Having defined conditional events, the probability of the truth of a condi- 
tional event (a|b) given the truth of the premise of the conditional is defined to 
be the usual conditional probability P{&\b) = P{a and b)/f(b). 

2.2. Operations on conditionals 

Each of the three operations defined below agrees with the corresponding 
Boolean operation when applied to conditionals with equivalent conditions. 
Therefore they extend the Boolean operations. 

2.2.1. Relative negation (') 
The relative negation of "a given b" is the "negation of a, given b". That is, 

(a|b)' = (a'|b). 

Note that the latter has conditional probability P{a' A b)/P(b) = \P(b) - P(a A 
b)]/P(b) = l-P(a|b). 

2.2.2. Disjunction (or) 
Concerning disjunction, "If b, then a, or if d, then c" means "If either 

conditional is applicable, then at least one is true". That is, 

(a|b) V (c|d) = (abvcd)|(bvd). 

To avoid parentheses, the conditioning operator ( | ) will be assigned an op- 
erator preference below disjunction (V). So negation (') is first in operator 
preference, conjunction (A or juxtaposition) is second, disjunction is third, and 
conditioning fourth. So the latter conditional may be written as (ab V cd|b V dj. 

2.2.3. Conjunction (and) 
Concerning conjunction, "If b, then a and if d, then c" means "if either 

conditional is applicable, then one is true while the other is not false". That is, 

(a|b) A (c|d) = [ab(c V d') V (a V b')cd]|(b V d) 

= (abd' V abed V b'cd)|(b V d), 
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which also means "if either conditional is applicable, then either they are both 
true or else one is true while the other is inapplicable." The latter formula also 
follows from the standard De Morgan formulas in Boolean algebra relating 
conjunction and negation to disjunction and negation. 

The algebra {$ft\0t)) of conditionals includes the original Boolean algebra 0& 
as those conditionals (88\Q), where Q is the universal event. In logical notation 
these are the conditionals (&\l) whose condition is certain. Analogously, these 
are like the integer fractions whose denominators are 1. The proposition a is 
identified with the conditional (a|l). Fixing the condition b yields a Boolean 
algebra (.^|b), also denoted (^/b). 

These operations corresponding to "not", "and" and "or" allow the usual 
manipulations, although the resulting system is not wholly Boolean. 

2.2.4. Iterated conditioning 
A conditional (c|d) may itself be a condition for another proposition or 

conditional proposition. Due to the largely unrecognized third truth status of 
conditional statements, to a great degree, natural language is ambiguous about 
such iterated conditioning. Without additional qualification the iterated form 
((a|b)|(c|d)), "(a|b) given (c|d)", could consistently be taken to mean any one 
of the following: 

"a given b and (c|d)" - (a|b A (c|d)), 
"a given b and (c|d) are true" - (a|b A c A d), 
"(a|b) not false given (c|d) is not false" - (a V b'jc V d'), 
"(a|b) true given (c|d) is not false" - (a A b|c V d'), 
"(a|b) not false given (c|d) is true" - (a V b'jc A d), 
"(a|b) true given (c|d) is true" - (a A b|c A d). 

Since it can be shown that b A (c|d) = b A (c V d'), this means that the first 
possibility (which will be the default interpretation) reduces to 

(a|b)|(c|d) = (a|b(cvd')). 

That is, "(a|b) given (c|d)" means "a given that b and (c|d) are not false". 
Note that from the above whenever a conditional proposition "if d, then c*' 

is itself a condition, then the corresponding (material conditional) proposi- 
tion, "either c or else not d", can be used in its place as is commonly done in 
two-valued logical proof arguments. The conditional (c|d) also acts like its 
corresponding material conditional, (cVd'), when conjoined (A) with any 
(otherwise unconditioned) proposition b. 

2.3. Motivations for the four operations on conditionals 

Although intuitive and technical motivations for these operations have been 
published several times (see for instance [12]), there are many people who still 
consider them to be debatable. Therefore a restatement and refinement of those 
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motivations is appropriate here. This can be done most efficiently using indi- 
cator functions as adopted and employed by Walker [36] to list all possible 
candidates for operations on conditionals. 

2.3.1. Conditionals and indicator functions 
It is now well known (see for instance [32, p. 334] or [9, pp. 234-235]) that 

any conditional (a|b) can be represented as a domain-restricted, measurable 
indicator function defined on the measurable subset b of Q as follows: 

/ 1,      w£ab, 
(a|b)(w) = ( 0,      to e a'b, 

\U,    web', 

U means "undefined". Conversely, any such indicator function assigning 1 and 
0, respectively, to disjoint events ab and a'b, and which is undefined elsewhere, 
determines a unique conditional (a|b). 

2.3.2. Boolean functions 
By a Boolean function is meant a polynomial built up from the identity 

function and constant functions on events using negation, conjunction and 
disjunction a finite number of times. 

By the well-known Fundamental Theorem of Boolean algebra such Boolean 
functions are completely determined by their values,/(l) and/(0), for the two 
Boolean values 1 and 0. In fact, a Boolean function/of one Boolean variable x 
is always of the form 

f(x) = (f(l)Ax)V(f(0)Ax') 

and a Boolean function / of two variables x and y is always of the form 

f(x,y)=f(l,\)xyVf(l,0)xy'vf(\,0)x'yVf(0,0)x'y', 

where for the sake of readability juxtaposition has replaced the conjunction 
operator in the latter formula. 

2.3.3. Operations on conditionals 
We restrict attention to operations on conditionals that are defined in such a 

way that the two components of the image conditional are Boolean functions 
of the component events of the operands. For instance, the negation operation 
(') defined on conditionals in Section 2.2.1 is of the form 

(a|b)' = te(a,b)|/.(a,b)), 

where g(a, b) and /j(a, b) are Boolean functions of a and b. The disjunction 
operation, V, is of the form 

(a|b)V(c|d) = (g(a,b.c,d)|/,(a,b;c,d)), 

where g and // are Boolean functions of a, b, c, and d. 
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Now it is easy to see that any such operation/on conditionals into the set 
of conditionals determines a unique three-valued truth table by simply 

setting a and b in turn to the values 1 or 0. If the operation is a one-place 
function like the negation operation, then the truth table will be: 

(*b) f(*tv) 
Oil) Gr(i,i)|A(i,i)) 
(0|1) (g(0,l)|A(0,l)) 
(010) (g(0,0)|/r(0,0))  

It is also known (see [12]) that conversely, any such truth table function k 
determines a unique operation on conditionals. A one-place truth table func- 
tion k generates a one-place conditional operation as follows: 

lk{\),     w £ ab, 
(*(a|b))(w) = Jfc((a|b)(co)) = ( Jfc(0),      co 6 a'b, 

U(U),   web'. 

That is, k assigns the measurable indicator function &((a|b)(co)) to any three- 
valued, measurable indicator function (a|b)(tu). 

A similar statement holds for a two-place, three-valued truth table. A two- 
place operation like disjunction has a truth table k of the form: 

k 1 0 U 

~ k(\,\) A(1,0) A(1,U) 
0 Jfc(0,1) £(0,0) *(0,U) 
U *(U,1) *(U,0) *(U,U) 

Conversely, such a truth table k defines a unique two-place operation / on 
conditionals by defining its associated indicator function /as follows: 

/((a|b), (c|d))(o>) = /c((a|b)H, (c|d)H). 

2.3.4. Motivations for the "not", "and" and "or" operations 
It has been shown above that the operations on conditionals are each 

characterized by a three-valued truth table. The negation operation (') has a 
truth table of the form 

Not(') 

1 X 

0 y 
u z 
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In this table J = (1|1), 0 = (0|1) and U = (0|0). Since negation of conditionals 
is intended to extend the Boolean negation operation, the values x and y must 
be 0 and 1, respectively. So only z is free. But since the double negation of a 
conditional should be the conditional back again, z must be U. (If z = 1, then 
(U')' = 1' = 0 ^ U; and if z = 0, then (U')' = 0' = 1 ^ U.) Thus the negation 
operation can only have the truth table above with x = 0, y = 1 and z = U. So 
(a|b)' must be (a'|b) since the latter conditional has the same truth table. 

Similarly, the conjunction operation (A) has a truth table of the form: 

A 1 0 u 
1 1 0 X 

0 0 0 y 
u X y • z 

Again, since conjunction of conditionals is intended to extend conjunction of 
Boolean events, l's and 0's have been inserted in the table in the appropriate 
places leaving only five entries undetermined. Since conjunction is intended to 
be commutative the table must be symmetric about the diagonal. Thus again 
only three values are still free. 

Since conjunction should be idempotent, it follows that z = U, and so there 
are only four possible ways to finish the table. 

To motivate the choice of values for x and y, consider how we normally 
prove a statement A in case B is true or in case its negation B' is true. We can 
show that A is true in case B is true and that A is true in case B' is true, and so 
therefore prove that A is true. That is, to show A is true, we can show that A is 
true given B is true and that A is true given that B' is true. That is, we use that 

(A|B) A (A|B') = A 

(We also know that if A is true, then (A|B) and (A|B') will each be true or 
inapplicable.) Setting B = 0 and A = 1 in the above equation yields that 

(1|0)A(1|1) = 1. 

That is, U A 1 = 1. Therefore x = 1 in the conjunction table. 
Similarly, we can show that A is impossible (0) by showing that both (A|B) 

is false and (A|B;) is false. That is, we use that 

(0|0)A(0|1)=0. 

This also follows by simply setting A = 0 instead of A = 1 above. So U A 0 = 0, 
and therefore in the conjunction table y must be 0. That completes the con- 
junction truth table. 

(Alternately, consider how a questionnaire with conditional questions is 
interpreted when some of the conditional questions do not apply to an indi- 
vidual: The answers to questions are basically conjoined and any inapplicable 
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questions are ignored. They do not make the whole set of answers inapplicable 
or undefined.) 

The disjunction operation (V) has a truth table like 

V 1 0 u 
1 1 1 X 

0 1 0 y 
u X y u 

and like the conjunction operation most of the table is determined because the 
operation is intended to extend Boolean disjunction to conditionals and be 
commutative and idempotent. These properties will all be satisfied and the 
table completed by simply specifying that the De Morgan's laws should also 
hold for conditionals. That is, we require that the negation of a conjunction of 
conditionals be equivalent to the disjunction of the negations of those condi- 
tionals. So since (0|0) A (0| 1) =0, taking negations on both sides, yields that 
(0|0)'V(0|1)' = 0', which is equivalent to (1|0) V(l|l) = 1. That is, UV 1 = 1. 
So in the disjunction table x must be 1. Similarly, since (110) A (111) = 1, taking 
negations on both sides yields that U V 0 = 0. So in the table y must be 0. 

We can now summarize the results of this subsection in the following theorem. 

2.3.5. Algebraic characterization theorem 
The only unary operation (') on conditionals whose double operation is 

idempotent and that extends Boolean negation on events and whose compo- 
nents are Boolean functions of the components of the operand conditional is 
that of Section 2.2.1, namely, (a|b)' = (a'|b). Furthermore, the only commu- 
tative, idempotent binary operations on conditionals that extend the con- 
junction and disjunction operations on events and whose components are 
Boolean functions of the components of the operands, and which satisfy the De 
Morgan's formulas, and which satisfy the property (c|d) A (c|d') = (c|d V d') 
for all events c and d, are those of Definitions 2.2.2 and 2.2.3, namely, 
(a|b) V (c|d) = (ab V cd|b v d) and (a|b) A (c|d) = (abd' V abed V b'cd|b V d). 

2.3.6. Alternate formulations 
Adams [4] also defines what he calls "quasi-operations" on conditionals that 

are equivalent to those of Sections 2.2.2 and 2.2.3 but he does not settle on an 
iterated conditional operation even though he does identify situations when 
update information is conditional. Adams refers to his operations as "quasi" 
specifically because they are not monotonic, that is, for example, the con- 
junction of conditionals does not necessarily imply each of the conditionals 
being conjoined. But that is just one way operations on conditionals differ from 
operations on ordinary events. 
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Schay [32J defines two 3-operation algebras, the first of which Goodman, 
Nguyen and Walker erroneously identify as equivalent to the author's first 
three operations (See p. 6 and p. 92 of [20]). This error was then propagated by 
Hailperin [23, p. 266]. But the truth is that the author's disjunction operation is 
in one of Schay's systems and the conjunction operation is in the other of 
Schay's systems, and so neither of Schay's systems contains the three opera- 
tions of Sections 2.2.1-2.2.3. No wonder Hailperin, as he says [23, p. 261], gets 
results so different from those of Schay. 

Concerning the third truth-value, Hailperin quotes Schay, who says for 
conditionals a and b: "... if a is defined and b is undefined, then we put 
max{a,b} = a and min{a,b} = a". Hailperin finds [23, p. 262] it "difficult to 
conceive of a rationale for defining max and min in this manner". The difficulty 
is in the misinterpretation of the third truth-value. When a conditional is 
"undefined" that is nothing like saying that its truth-value is unknown. In the 
latter situation assigning a truth-value or better, a probability, between 0 and 1 
is appropriate. But a conditional with a false condition is not somewhat true; it 
does not deserve to have a truth-value between 0 and 1 as though it were 
somewhat true. It is simply inapplicable - a completely different category. 
Conjoining a true or false statement with one that is inapplicable leaves the 
applicable statement unchanged. Is that so difficult to conceive? Is that not 
what we do when we skip an inapplicable question on a questionnaire and fill 
out the other questions? In principle, we expect the reader to conjoin all of our 
answers, conditional or not, and ignore the inapplicable questions. We do not 
expect the reader to declare the whole form "undefined" merely because one 
inapplicable conditional was encountered. 

Hailperin also takes issue with the author [23, p. 264] for claiming that when 
rolling one 6-sided die the statement "if the roll is even, then it will be a 6 or if 
the roll is odd, then it will be a 5" is intuitively equivalent to the statement 
"The roll will be a 6 or a 5". He does not see it as so clear cut and apparently 
finds the Goodman-Nguyen alternative translation as "If the roll is 6 or 5, then 
the roll will be 6 or 5", to be intuitively preferable, even though it has a con- 
ditional probability of 1. 

Shifting to the conjunction operation in keeping with the motivations pre- 
sented in this paper, one wonders whether Hailperin finds the statement "If the 
roll is even, then it will be a 5 or a 6 and if the roll is odd, then it will be a 5 or a 
6" to be intuitively equivalent to "the roll will be a 5 or a 6 whether or not it is 
even". That is, after all, the intuitive meaning of a proof by cases, and it also 
works when the conclusion is uncertain. But the conjunction operation favored 
by Hailperin, Goodman and Nguyen has it that the statement is instead 
equivalent to "if the roll is 1, 2, 3, or 4, then falsity". That might be an ac- 
ceptable translation for some logical purposes but it has conditional probably 0 
instead of 2/6, which is the intuitive probability of getting a 5 or 6 in one roll of 
a die given that the roll is odd or even. 
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2.3.7. Motivations for the iterated conditioning operation 
The fourth operation on conditionals, defined in Section 2.2.4, is essential 

for closure of the algebraic system. Without it, conditioning cannot be per- 
formed on conditionals, and deduction or inference of a conditional by another 
conditional remains out of reach of the syntax of the algebra. The ability of the 
system to express other operations on conditionals is also greatly expanded by 
the inclusion of the fourth operation. As shown by Tyszkiewicz [15] and his co- 
authors, the other operations on conditionals defined by Goodman et al. [20] 
can all be expressed in terms of the four operations defined in Sections 2.2.1- 
2.2.4. 

When discussing the author's system of conditionals some authors [36, p. 
1706], have ignored the iterated conditioning operation as though it were a 
thing apart, preferring to characterize the system in terms of just the first three 
operations and identifying it with the first three operations of the system of 
Sobocinski [28,35]. While the first three operations of Sobocinski are equiva- 
lent to those of Sections 2.2.1-2.2.3, the fourth is quite different from Sobo- 
cinski's implication operation. 

When the fourth operation is included it is clear that the operations of 
Sections 2.2.1-2.2.4 are not a repetition of those that have previously been 
explored in the literature. (This is also apparent when it is noted that an iter- 
ated conditional ((a|b)|(c|d)) is not interpreted to be an implication (c|d) —* 
(a|b), as is done by most authors. Nor is the conditional itself an implication. 
Rather, implications are separately defined as in this paper.) 

Now the most straightforward way to motivate the iterated conditional 
operation of Section 2.2.4 is to extend the following rule for unconditional 
(Boolean) events a, b and c: 

((a|b)|c) = (a|bAc). 

Here again, mathematicians routinely prove theorems by successive condi- 
tioning according to the above formula. We very often read arguments of the 
form "if c is true, then if also b is true, then a will be true". The proof will then 
proceed to show that if both b and c are true, then a will be true, and no one 
will dispute the matter. 

In this regard, Adams [4, p. 33] mentions this iterated conditional simplifi- 
cation as intuitively plausible but says that it would entail "giving up modus 
ponens in application to conditionals with conditional consequents". Adams' 
example is that ((A|B)|A) would be certain and so we should always infer 
(A|B) from A, but, he says, we know independently that this inference is not 
always sound. However there seems to be no real problem with this inference 
when we are talking about conditionals instead of implications. When A is true 
the conditional (A|B) will be true as long as B is true, or inapplicable if B is 
false. We arc not inferring that (A|B) is always true. 
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The general iterated conditional ((a|b)|(c|d)) can then be reduced using this 
formula as follows: 

((a|b)|(c|d)) = (a|(bA(c|d))), 

which can be further reduced to (a|(b A (c V d'))), which is a conditional with 
Boolean components as required. 

The truth table for this conditioning operation, |, is: 

(1) l 0 u 
1 l u 1 
0 0 u 0 
u u u u 

where the first two columns extend the case of iterated Boolean (uncondi- 
tioned) events, and the third column expresses the interpretation that an un- 
defined condition leaves the consequent unchanged. That is, (1|U) = 1, 
(0|U) = 0and (U|U) = U. 

Adding to the premise of the characterization theorem of Section 2.3.5 the 
iterated conditioning rule 

((a|b)|c) = (a|bc) 

for any events or conditional events a, b and c, the whole system of four op- 
erations on conditionals (Sections 2.2.1-2.2.4) has been algebraically charac- 
terized. 

2.4. Deduction of conditionals by conditionals 

If statements of the certainty of a proposition or conditional proposition are 
allowed such as "c is never false" or "(c|d) is never false", then there are many 
more forms of deduction involving the equivalence relation " = ". It becomes 
clear, then, that deduction and inference involving conditionals requires special 
care in specifying exactly what is being assumed (the conditions), and secondly 
exactly what is being deduced or inferred, and thirdly exactly what type of 
deduction between conditionals is being invoked. 

3. Deductive relations and deductively closed sets 

Due to the existence of four (not just two) propositions between two con- 
ditionals, deduction takes several forms. To put them into a common context 
the following algebraic definitions are useful: 
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3.1. General deductive relations on conditionals 

First some basic definitions and a theorem set the stage: 

Definition 3.1.1. A deductive relation (also called apreorder or an implication) is 
a reflexive and transitive relation, <, on a set. 

The symbol "<" is used to denote deduction instead of an arrow, => or —•, 
in order to connote the interpretation of deduction in terms of inclusion: In 
Boolean logic, an event A implies a second event B if and only if every instance 
cu in A is also in B; that is, every occurrence of A is an occurrence of B. So 
event A implies event B if and only if A is a subset of B. 

Definition 3.1.2. A deductive relation < for conditionals has the Boolean Ex- 
tension Property if and only if for all propositions a, b, and c, 

ab < cb    implies (a|b) < (c|b). 

That is, a deductive relation < on 38/98 has the Boolean Extension Property 
if it extends the Boolean deduction relation < of every Boolean sub-algebra 981 
b, of 98/98, that is, if it agrees with Boolean deduction on every Boolean sub- 
algebra 981b, of 98/98. 

Definition 3.1.3. The deductive relation < is well-defined with respect to 
equality ( = ) of conditionals if and only if whenever (a|b) = (ajbi) and 
(c|d) = (c,|d,) and (a|b) < (c|d) then (a,|b,) < (c,|d,). 

Theorem 3.1.4. If a deductive relation < has the Boolean Extension Property 
then it is well-defined with respect to equality ( = ) of conditionals. 

Proof of Theorem 3.1.4. Suppose (a|b) = (aj |t>i) and (c|d) = (c,|d|) and 
(a|b) < (c|d)- By the definition of equality ( = ) of conditionals, b = b| and 
d = d|, and ab = a|b|=aib and similarly cd = C|d. So (ajb,) = (ajb) < 
(a|b) < (c|d) = (c|di) < (C||di) using both substitution and the Boolean Ex- 
tension Property twice. By transitivity of < it follows that (a, |b,) < (c, |d|).    • 

According to one standard definition, a subset S of unconditioned events (or 
propositions) is a deductively closed set of events (or propositions) provided 
that: (1) the conjunction of any two propositions in S is also in S, and (2) any 
event that subsumes an event in S is also in S. A similar definition also works 
for deductively closed subsets of conditional propositions (or events) with re- 
spect to some specified deductive relation (preorder): 
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Definition 3.1.5 {Deductively closed sets). A subset H of Mj'M is said to be 
deductively closed with respect to a deductive relation <v if and only if // lias 
both of the following properties: 

(1) If (a|b) e H and (c|d) 6 H, then (a|b) A (c|d) e //, and 
(2) If (a|b) e H and (a|b) <, (c|d), then (c|d) e H. 

The first property will be called conjunctive closure and the second will be called 
deductive closure. H is said to be a deductively closed set (DCS) of conditionals 
with respect to <x. For Boolean propositions, <x can be the standard deduc- 
tion relation. 

Definition 3.1.6 (Deductive equivalence (=x) of conditionals) 

(a|b) =x (c|d)    if and only if (a|b) <v (c|d) and (c|d) <t (a|b). 

3.2. Extensions of Boolean implication 

The following definitions are natural since they are equivalent in Boolean 
algebra but not so in the algebra of conditionals 'SfM. 

Definition 3.2.1  [Conjunctive implication (<A)) 

(a|b) <A (c|d)    if and only if (a|b) A (c|d) = (a|b). 

Definition 3.2.2 (Disjunctive implication (<v)) 

(a|b) <v (c|d)    if and only if (a|b) V (c|d) = (c|d). 

Definition 3.2.3 (Probabilistically monotonic implication (<pm)) 

(a|b) <pm (c|d)    if and only if (c|d) V (a|b)' = (1 |d V b). 

Proving reflexivity and transitivity for the above three deductive relations 
is trivial except perhaps transitivity for the last one, which will be proved as a 
corollary to Theorem 3.2.10. Similarly, showing the following three plausible 
implication relations are reflexive and transitive is an easy corollary of 
Theorems 3.2.7 and 3.2.8, which prove that they are all equivalent to each 
other. 

Definition 3.2.4 (Non-falsity implication (<nr)) 

(a|b) <„, (c|d)    if and only if (a V b') < (c V d'). 

That is, if (a|b) is not false, then (c|d) is not false. 
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Definition 3.2.5 {Necessary implication (<„)) 

(a|b) <„ (c|d)    means if (a|b) = (l|b), then (c|d) = (l|d). 

That is, if" a is necessary given b, then c is necessary given d. 

Definition 3.2.6 (Conditional necessity implication (<c)) 

(a|b) <c (c|d)    means (c|d)|(a|b) = (l|d)|(a|b). 

That is, given (a|b), c is necessary given d. 

Theorem 3.2.7. Non-falsity implication is equivalent to conditional necessity 
implication. 

Proof of Theorem 3.2.7. (c|d)|(a|b) = (l|d)|(a|b) iff [(c|d) = (l|d)]|(a|b) iff 
(d < c)|(a|b) iff (d|(a|b)) < (c|(a|b)) iff d(a V b') < c(a V b') iff dc'(a vb')<0 
iff (aVb') < (cVd'). (The result also follows by simplifying (c|d)|(a|b) to 
(c|d(aVb')) and (l|d)|(a|b) to (l|d(aVb')), which are equal. So cd(a V b') = 
d(a V b'), which is equivalent to (a V b') < (c V d').)    D 

Theorem 3.2.8. Non-falsity implication is equivalent to necessary implication. 

Proof of Theorem 3.2.8. (a|b) = (l|b) means ab = b, which means b < a, 
which means (a V b') = 1. Similarly (c|d) = (l|d) is equivalent to (cVd')= 1. 
So the necessary implication (a|b) <„ (c|d) means that (a Vb')= 1 implies 
(c V d') = 1, which can only be true providing a V b' < c V d'.    • 

The last assertion needs some proof: 
From Definition 3.2.4, for which transitivity is trivial, and Theorems 3.2.7 

and 3.2.8, it follows that all three relations of Definitions 3.2.4-3.2.6 are 
transitive. 

Theorem 3.2.9 (The certainty of non-falsity). If whenever a V U — 1 then 
c V d' = 1, then aV b' < c V d'. (The converse is trivial.) 

Proof of Theorem 3.2.9. Suppose e is an arbitrary proposition. By hypothesis, if 
(a Vb'|e) = (l|e), then (cVd'|e) = (l|e). So for all propositions e, [(aVb')e = 
e] implies [(c V d')e = e]. That is, for all propositions e, [e < (a V b')] implies 
[e<(cVd')]. Setting e = (a V b'j yields that [(a V b') < (a V b')] implies 
[(a V b') < (c V d')]. Since [(a V b') < (a V b')] is always true, so too must 
l(aVb') < (cVd')j.    • 

Since these three relations are equivalent, it suffices to show any one of them 
to be reflexive and transitive. The non-falsity relation of Definition 3.2.4 is 
obviously reflexive and transitive. 
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Theorem 3.2.10. The deductive relations <A,<v,<pni, and <„f on conditionals 
defined by the following equations can be reduced to the Boolean relations listed 
on the right-hand side: 

<A: (a|b) A (c|d) = (a|b) if and only if (a V b') < (c V d') and (b' < d'). 
<v: (ajb) V (cjd) = (c|d) if and only if (a A b) < (c A d) and (b < d). 
<pm: (a|b)'v(c|d) = (l|bvd) i//(aVb') < (c V d') and (a A b) < (cAd). 
<nf: [(c|d)|(a|b)] = [(l|d)|(a|b)] if and only if (a V b') < (cVd'). 

Proof of Theorem 3.2.10. Concerning the first equation of the theorem, suppose 
(a|b) A (c|d) = (a|b). Applying the conjunction operation and the definition of 
equivalence for conditionals yields the two equalities abd' V b'cd V abed = ab 
and b V d = b. So immediately from just the second equality it follows that 
d < b, which is equivalent to b' < d'. Since b'd = 0 the first equality becomes 
abd'V 0 V abed = ab, which is equivalent to ab(d'V cd) = ab. The latter is 
equivalent to ab < (d' V cd), and since b' < d', it follows immediately that 
b' V ab < (d' V cd), which is (a V b') < (c V d'). Reversing these steps produces 
the converse. For the second equality, applying the disjunction operation and 
the definition of equality of conditionals yields that ab V cd = cd and b V d = d, 
which are equivalent to ab < cd and b < d, respectively. Reversing these steps 
yields the converse of the second equation. Concerning the third equality of the 
theorem, applying negation and disjunction for conditionals and the definition 
of equivalence of conditionals yields a'b V cd = b V d and b V d = b V d. Con- 
junction of both sides of the first equality by ab yields abed = ab, which is 
equivalent to ab < cd. Conjunction of both sides of the first equality instead by 
c'd yields (a'b)(c'd) = (c'd)bVc'd = c'd. So c'd < a'b, which, by taking com- 
plements of both sides and reversing the inequality, is equivalent to (a V b') < 
(cVd'). The converse of the third equality of the theorem follows since if 
ab < cd and c'd < a'b, then a'b V cd = (a'b V c'd) V (cd V ab) = (a'b V ab) V 
(cd Vc'd) = b Vd. That is a'bVcd = bVd, which is equivalent to (a|b)'v 
(c|d) = (l|bvd). Finally, concerning the fourth equality of the theorem, ap- 
plying the conditioning operation and the definition of equivalence of condi- 
tionals yields that cd(a V b') = d(a V b'). Disjunction on both sides of the latter 
equality by d'(a V b') yields (cd V d')(a V b') = (a V b'), which is equivalent to 
(a V b') < (c V d'). Conversely, if (a V b') < (c V d') then conjunction of both 
sides by d yields that (aVb')d<cd. So (cd)(a V b')d = (a V b')d. That is 
(cd)(a V b') = (a V b')d, which is equivalent to the left-hand side of the fourth 
equality of the theorem. That completes the proof of Theorem 3.2.10.    • 

The reduction of the relations listed in Theorem 3.2.10 to their associated 
Boolean relations also exhibits the obvious transitivity of those relations. 

This theorem also suggests that the Boolean relations on the right-hand 
sides of "if and only if" in Theorem 3.2.10 define elementary implications on 
conditionals. Indeed, there is the following hierarchy of implications (Fig. 1): 
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Trivial implications Elementary implications 

1 - Implication of identity (<|) 
(a|b)<, (c|d) iff (a|b) = (c|d) 

bo - Boolean deduction (:M\ fixed b) 
(<bo) 

(a|b) <b0 (c|d) iff b = d and ab < cd 
ec - Implication of equal conditions 
(<ec) 

(a|b) <ec (c|d) iff b = d 
0 - Universal implication 

(a|b) <0 (c|d) for all (a|b) & (c|d) 

Two elementaries combined 

tr - Implication of truth (<tr) 
(a|b) <tr (c|d) iff ab < cd 

nf - Implication of non-falsity (<„f) 

(a|b)<nf(c|d)ifr(avb')<nf(cvd') 
ap - Implication of applicability (<ap) 

(a|b) <ap (c|d) iff b < d 
ip - Implication of inapplicability 
(<iP) 

(a|b) <ip (c|d) iff d < b 

Three elementaries combined 

V - Disjunctive implication (< V) 

pm - Probabilistically monotonic im- 
plication; (<pm) 
A - Conjunctive implication (<A) 

mV - (Probabilistically) monotonic 
and applicability implication (<mV) 
mA - (Probabilistically) monotonic 
and inapplicability implication (<mA) 

Fig.  1. Hierarchy of implications (deihiciive relations) for conditionals. 



164 PC. Calabrese I Information Sciences 147 (2002) 143 191 

Note also that all four elementary preorders have the Boolean extension 
property because for x e {ap, ip}, the relation (a|b) <v (c|b) holds whether or 
not (ab < cb) holds. For x = tr, (a|b) <x (c|b) reduces to the hypothesis 
ab < cb, and finally for x = nf, (a|b) <v (c|b) reduces to a V b' < c V b', which 
becomes ab < cb after conjunction on both sides by b. Since ab < cb implies 
(a|b) <v (c|b) for all four elementary preorders x, the other preorders in the 
hierarchy also satisfy the Boolean extension property. (See also [10, p. 687-688] 
and [11, pp. 85-100].) 

3.2.11. Probability relationships. Probability relationships naturally flow from 
the above implication relations, although among the 13 defined above only 
monotonic implication, and those above it in the hierarchy, ensure probabi- 
listic monotonicity. That is, if (q|p) <,„„ (s|r), then P{q\p) < P{s\i')- For in- 
stance, conditional necessity implication, (q|p) <c (s|r), ensures only that P(q V 
p') </>(sVr'). 

3.2.12. Conditional equivalence. Although the three equivalent implication re- 
lations (<nr,<c, and <„) are reflexive and transitive, they are not anti-sym- 
metric. That is, (a|b) <nf (c|d) and (c|d) <„r (a|b) together do not imply that 
(a|b) = (c|d). That is, (a V b') = (c V d') does not imply that b = d and ab = cd. 
As such, <nf is a quasi-order (also called a preorder), but not a partial order. 
Equivalently, (a|b) <nf (c|d) if and only if c'd < a'b. The latter means that "if 
(c|d) is false then (a|b) is false." In these terms, (a|b) =nf (c|d) means that (a|b) 
is false if and only if (c|d) is false. 

3.2.13. Conditional implication and the contrapositive. Note that a conditional 
proposition (a|b) and its contrapositive, (b'|a'), are non-falsely equivalent: 
(a|b) =„r (b'|a'). This is reassuring since a conditional proposition and its 
contrapositive should be logically equivalent when regarded as wholly non-false 
(as when assumed or conditioned upon) but not equivalent, nor even have the 
same probability, when regarded as partially false. In fact, a conditional (a|b) is 
false if and only if its contrapositive (b'|a') is false, but if either (a|b) or (b'|a') is 
true the other is inapplicable. They can also both be inapplicable. (See [9, p. 
222], for a comparison of the probability of (a|b) with the probability of (b'|a').) 

3.2.14. Certainty theorem. If, whenever ab = 1 then cd = 1, then ab < cd. Thai is, 
if, whenever (a|b) is true then (c|d) is true, then ab < cd. (The converse is easy.) 

Proof of Theorem 3.2.14. If for all propositions e, (ab|c) = (l|e) implies 
(cd|e) = (l|e), then it follows as above that for all e, [e < ab] implies [e < cd]. 
Then setting e = ab yields that ab < cd. 

So the "necessarily true" preorder <„,, defined by: 

(a|b) <„, (c|d)    means if (ab = 1), then (cd = 1) 

is equivalent to the preorder <tr, defined by (ab < cd).    • 
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The deductive relations above and some new ones built up from the ele- 
mentary deductions have been organized into a hierarchy (Fig. 1) defined 
completely in terms of Boolean relations on the Boolean components of the 
conditionals. These results are summarized in the following: 

3.2.15. Interpretations of elementary deductive conditionals. 
<lr: ab < cd "If (a|b) is true, then (c|d) is true." 
<nf: a V b' < c V d' "If (a|b) is not false, then (c|d) is not false." 
<ap: b < d "If (a|b) is applicable, then (c|d) is applicable." 
<ip: b' < d' "If (a|b) is inapplicable, then (c|d) is inapplicable." 

3.2.16. Two elementary deductive relations combined. From these four elemen- 
tary deductive relations, three of the previously identified deductive relations 
(<A, <v> and <Pm) can be defined by combining the properties of two of the 
elementary deductive relations: 

(a|b) <A (c|d)    if and only if (a V b') < (c V d') and (b' < d') 

(Conjunctive implication). 

(a|b) <v (c|d)    if and only if ab < cd and b < d 

(Disjunctive implication). 

(a|b) <pm (c|d)    if and only if ab < cd and (a V b') < (c V d') 

(Probabilistically monotonic implication). 

3.2.17. Three elementary deductive relations combined. Two additional deduc- 
tive relations arise by combining the properties of <pm with the property of 
<ap, or of <jp: 

(a|b) <mA (c|d) if and only if ab < cd, (a V b') < (c V d'), and b' < d'. 
(a|b) <mv (c|d) if and only if ab < cd, (a V b') < (c V d'), and b < d. 

3.2.18. Deductive equivalence theorem. For x e {ap, tr,nf, ip,ec,0}, (a|b) =x 

(c|d) does not imply (a|b) = (c|d), but for the other seven deductive relations in 
the hierarchy, (a|b) =x (c|d) implies equality of (a|b) and (c|d) as conditionals. 

Proof of Theorem 3.2.18. For x = 0, (a|b) =v (c|d) is true for any two unequal 
conditionals. So equality of (a|b) and (c|d) is not implied. For x e {ap,ip,ec}, 
(a|b) =v (c|d) simply implies that (a|b) and (c|d) have common condition. That 
is, b = d, but they need not be equal. For x = nf, (a|b) =x (c|d) implies only 
a V b' = c V d', which does not imply equality of (a|b) and (c|d). Similarly for 
x = tr, because (a|b) =x (c|d) implies ab = cd, but not that b = d, which is re- 
quired for equality. For x = pm, (a|b) =, (c|d) implies both ab = cd 
and a V b' = c V d'. So a'b = c'd. Therefore b = ab V a'b = cd V c'd = d. So 
(a|b) =pm (c|d) implies (a|b) = (c|d). Each of the other two deductive relations 

are stronger than <|;m and so imply equality too. For x — bo. 
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(a|b) =x (c|d) trivially implies both b = d and ab —cd and so (a|b) = (c|d). For 
x = 1, trivially (a|b) =x (c|d) means (a|b) = (c|d). Finally the remaining two 
deductive relations, <A and <v, are stronger than one of <ap or <;p and so 
(a|b) =x (c|d) implies that b = d. But (a|b) =v (c|d) implies ab = cd and thus 
that (a|b) = (c|d). Similarly, (a|b) <A (c|d) implies aVb' = cV d'. Since b = d, 
(a V b')b = (c V d')d. That is, ab = cd, and so (a|b) = (c|d). That completes the 
proof of Theorem 3.2.18.    • 

3.3. Construction of deductively closed sets 

Having described the hierarchy of deductive relations on conditionals it 
remains to describe how to construct the deductively closed sets with respect to 
them. 

To show that all of these deductive relations have at least one closed set of 
conditionals the following are listed: The set H = 28/38, the whole set of 
conditionals, is deductively closed with respect to any deductive relation <v. 
H = {(q|p) : p < q} is deductively closed with respect to <„r. H = {(1|1)} is 
deductively closed with respect to <v. H(b) = {{x\y) : y < b} is deductively 
closed with respect to <;p. A^(b) = {(x\y) : b < y] is deductively closed with 
respect to <ap. L(b) = {{x\y) : b < xy} is deductively closed with respect to <tr. 

Theorem 3.3.1 (Conjunction theorem for deductively closed sets with respect 
to two deductive relations). Suppose that Hx is a deductively closed set of con- 
ditionals with respect to deductive relation <x, and that Hy is a deductively closed 
set of conditionals with respect to deductive relation <y. Then the intersection 
Hx f\Hv is a DCS, H^y, with respect to the combined preorder <tni, defined by: 

(a\b) <xny {c\d)    if and only if (a\b) <x (c\d) and {a\b) <y (c\d). 

That <xriy is a deductive relation is straightforward, and the proof of the 
theorem is also quite straightforward. 

In view of the hierarchical relationships between the various deductive re- 
lations presented here, the above theorem significantly simplifies matters since: 

(a) All non-trivial deductive relations in the hierarchy can be built up by 
combining the four elementary deductive relations. 
(b) The deductively closed sets with respect to a combined deductive relation 
include all the intersections of the deductively closed sets with respect to 
their constituent deductive relations. 
(c) For any initial subset J of conditionals, to determine the deductively 
closed sets generated by J with respect to the various combined deductive 
relations in the hierarchy, start with the intersections of the deductively 
closed sets with respect to the constituent deductive relations. All such inter- 
sections will be DCSs with respect to the combined relation, but not all 
DCSs with respect to a combined deductive relation are intersections of 
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DCSs of more elementary deductive relations, although those generated by a 
single conditional will be shown to be. 

3.3.2. Conjunction of conditionals implies disjunction. Note also that for any 
deductive relation <, with the Boolean extension property, (a|b) A (c|d) <x 

(a|b) V (c|d) always holds. It then follows from either of the defining properties 
of a deductive relation that for any deductively closed set H 

If (a|b) e H and (c|d) e H then (a|b) V (c|d) 6 H. 

But it is not in general true (unless <v is also assumed) that 

If (a|b) € H then for all (c|d), (a|b) V (c|d) € H. 

3.4. Generators of a deductively closed set of conditionals 

In practice we are interested in determining what conditionals can be de- 
duced, and in what sense deduced, from a given set / of conditionals. 

3.4.1. Definition (deductive extension). If J is any subset of 38/y$, let HX(J) 
denote the smallest deductively closed subset with respect to <., that includes J. 
We say that HX(J) is the deductive extension of J with respect to <t, or that J 
generates HX(J) with respect to <x, or that J "^-implies" the DCS HX(J). A 
DCS is principal if it is generated by a single conditional. 

3.4.2. Theorem on principal deductively closed sets. With respect to any de- 
ductive relation <x among the 13 in the hierarchy, the deductively closed set 
generated by a single conditional (a|b) is the set of conditionals that subsume it 
with respect to the deductive relation. That is, with respect to any preorder <x 

among the 13 in the hierarchy the principal DCS generated by an individual 
conditional (a|b) is the set Hx{(&\b)} = {(y\z) : (a|b) <x (y\z)} of all condi- 
tionals that are implied by (a|b) with respect to <x. Hx{{a\b)} will be denoted 
by //,(a|b). 

Proof of Theorem 3.4.2. The proof follows from the fact that for 
x e {ap, tr, nf,ip}, //,(a|b) is closed with respect to <,, by some easy algebraic 
steps and so too for the other deductive relations above them in the hierarchy 
since they consist of combinations of the defining properties of the elementary 
deductive relations. (For x = 0, /4(a|b) is trivially closed with respect to <,.) 
Thus conjunctive closure (of Definition 3.1.5) holds for //t(a|b) in these cases. 
Deductive closure (of Definition 3.1.5) also holds for//^(a|b) by the transitivity 
property of all deductive relations <x. Thus for all deductive relations in the 
hierarchy, Hx{a.\b) is deductively closed and includes (a|b). Clearly, every de- 
ductively closed set containing (a|b) must also include Hx(-a\b). So Hx(-&\b) is 
the deductively closed set generated by {(a|b)}.    D 
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With respect to each of the deductive relations in the hierarchy of Fig. 1 it is 
now possible to completely describe the principal deductively closed sets of 
conditionals generated by a single conditional (a|b). 

3.4.2.1. Principal deductively closed sets of the elementary deductive relations 
<api<tr><nfi and <ip. For deductive relation <ap, the DCS generated by the 
single conditional (a|b) is //ap(a|b) = {(c|d) : (a|b) <ap (c|d)} = {(c|d) : b < 
d}, and so 

//ap(a|b) = {{x\b V y) : any x,y in 38). 

For deductive relation <lr, the DCS generated by the single conditional (a|b) is 

y/u(a|b) = {(c|d) : (a|b) <„ (c|d)} 

= {(c|d) : ab < cd} 

= {(c|d) :ab <c,ab < d}, 

and so 

//lr(a|b) = {(abVx|ab Vy) : any x,y in &}. 

For deductive relation <„,, the DCS generated by the single conditional (a|b) is 

//„r(a|b) = {(c|d) : (a|b) <„r (c|d)} 

= {(c|d) :avb'<cvd'} 

= {(c|d) :d(aVb') < c} 

= {((d(a V b') V jc)|d) : any x, d in ?1) 

= {{{y{ aVb') Vx)\y) : any x,y in ^}, 

and so 

//,„(a|b) = {(ab V b' V x\y) : any x,y in 36). 

For deductive relation <jP, the DCS generated by the single conditional (a|b) is 

«ip(a|b) = {(c|d) : (a|b) <ip (c|d)} = {(c|d) : b' < d'} = {(c|d) : d < b}, 

and so 

//jp(a|b) = {{x\by) : any x,y in M\. 

These principal DCSs for the elementary deductive relations are given in non- 
reduced form but the reduced forms can easily be determined. 

3.4.2.2. Principal deductively closed sets of non-elementary deductive relations. 
Using the Conjunction Theorem 3.3.1 for deductive relations, and Theorem 
3.4.2 on principal DCSs all the DCSs generated by a single conditional (a|b) by 
the non-elementary deductive relations can be determined as the intersection of 
the principal DCSs of the elementary deductive relations. This follows because 
for a single conditional (a|b), 
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//xni,(a|b) = {(c|d) : (a|b) <,nv (c|d)} 

= {(c|d) : (a|b) <x (c|d) and (a|b) <,. (c|d)} 

= //v(a|b)n//,(a|b). 

For deductive relation <v, the DCS generated by the single conditional (a|b) 
is //v(a|b) = //aprnr(a|b) = //ap(a|b) n//tr(a|b). So by combining constraints 
expressed above for //ap(a|b) and f/u(a|b), 

//v(a|b) = {(ab Vx\bVy) : any x,y in 3d). 

For deductive relation <pm, the DCS generated by the single conditional (a|b) 
is //pm(a|b) =//lrnnf(a|b) =//t,(a|b) n7/„f(a|b). So by combining constraints 
expressed above for //lr(a|b) and //„r(a|b), 

//pm(a|b) = {(ab V b' V.x|ab Vy) : any x,y in 38). 

For deductive relation <A, the DCS generated by the single conditional (a|b) is 
//A(a|b) =//„fnip(a|b) = //nf(a|b) n//ip(a|b). So by combining constraints ex- 
pressed above for 7/nf(a|b) and //jp(a|b),//A(a|b) = {((ab V b' V x)\by) : any x, 
y in 3$), which can be simplified as 

//A(a|b) = {(ab V jc|by) : any x,y in 38}. 

For deductive relation <ec, the DCS generated by the single conditional (a|b) is 
simply {(x\y) : y = b}. So 

//ec(a|b) = {{x\b) : any x in &). 

For deductive relation <mV, the DCS generated by the single conditional (a|b) 
is A/mv(a|b) = //apnPm(a|b) = //ap(a|b) n//pm(a|b). So by combining constraints 
expressed above for //ap(a|b) and //pm(a|b), 

//mv(a|b) = {((abvb'vjc)|(bv.y)) :anyx,.yin 38). 

(Note that //mv(a|b) can also be expressed as //apnnf(a|b) or as //vnnf(a|b) or as 
^vnpm(a|b) with equivalent results.) 

For deductive relation <„,A, the DCS generated by the single conditional 
(a|b) is //mA(a|b) =//irrup(a|b) — #ir(a|b) n//ip(a|b). So by combining con- 
straints expressed above for //tr(a|b) and //ip(a|b),//mA(a|b) = {((ab Vx)| 
(ab V;.-b)) : any x,y in 38}. So, 

//mA(a|b) = {(aVx|ab M yb) : any x,y in 08). 

(Note again that //mA(a|bj can also be expressed as //trnA(a|b) or as //pmniP(a|b) 
or as //pmnA(a|b) with equivalent results.) 

For the deductive relation <bo the DCS generated by the single conditional 
(a|b) is 

//bo(a|b) = {((a Vx)|b) : any x in 38}. 
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Having described the principal DCSs of the 11 non-trivial deductive relations 
in the hierarchy, they can be used to build up the DCSs generated by more than 
a single conditional. In this regard, Dubois and Prade [18, Definition 1, p. 
1719], adapt a theorem of Adams [4, Theorem 1, p. 52] expressed in a prob- 
ability context to define the logical entailment of a set of conditionals /. Their 
construct is similar to what below is called the conjunctive closure: 

3.4.3. Deductive extension theorem. Let / be a subset of 88/3) and define the 
conjunctive closure D(J) of J by: 

D(J) = I /\(a|b)„ n finite, (a|b), € J I. 

That is, D{J) is the set of all finite conjunctions of any members of J. Then for 
any deductive relation in the hierarchy except for x G {tr, V}, the set HX{J) 
defined by 

HX(J) = {(c|d):(a|b)<x(c|d),(a|b)GD(y)} 

that is, the set of all conditionals implied with respect to <x by some member of 
D(J), is the deductively closed set with respect to <v generated by J. In sym- 
bols, 

HX{J) = \ (c|d) : 3(a|b),. €J, i = 1 to n (finite) such that /\(a|b),- 

<.(c|d)J. 
Corollary of deductive extension theorem. Since HX{J) is the union of the all 
conditionals that are implied by some individual member of D(J), it follows by 
Theorem 3.4.2 on principal deductively closed sets that for all deductive rela- 
tions <x in the hierarchy except for <lr and <V) the DCS generated by a set of 
conditionals J is the union of the principal DCSs generated by the individual 
members of the set D(J) of all finite conjunctions of the conditionals in J. 

Proof of Theorem 3.4.3. First property (2) of Definition 3.1.5: If (a|b) G HX{.J) 
and (a|b) <x (c|d), then there exists (q|p) G D{J) such that (q|p) <x (a|b). So 
by transitivity of <x, (q|p) <v (c|d). Therefore, (c|d) G HX(J). That shows 
property (2) for any deductive relation <v. To show property (1), suppose that 
(a|b) G HX(J) and (c|d) G HX(J). So there exist (q|p) G D(J) and (s|r) G D(J) 
such that (q|p) <x (a|b) and (s|r) <x (c|d). Now, (q|p) A (s|r) G D(J) because 
the conjunction of two finite conjunctions of elements of J is a finite con- 
junction of elements of /. It follows (by the next lemma) that except for 
x G {tr, V}, (q|p) A (sjr) <, (a|b) A (c|d).   Therefore   (a|b) A (c|d) G HX{J).   So 



P'.G. Calabrese I Information Sciences 147 (2002) 143-191 171 

property (1) holds. Finally, HX(J) is the smallest deductively closed subset with 
respect to <x that includes J because HX(J) includes D(J), and D(J) includes J. 
So HX(J) includes J. Secondly, any deductively closed set that includes J, by 
repeated application of property (1), must include all finite conjunctions of 
elements of J, and so, by property (2), must include any (c|d) for which there is 
an (a|b) e J with (a|b) <v (c|d). Concerning the deductive relations <v for 
xG {tr, V}, a counter example to the theorem is provided by the set J = 
{(l|b),(l|b')} in the nine element conditional algebra 38I& generated by 
Boolean algebra & = {l,b,b',0}. (See the four DCSs of <tr in Table 1.) For 
this set J, D{J) = {(l|b), (l|b'), 1}, and so by the theorem Hlc(J) would be 
{(e|f) : (a|b) <lr (e|f),(a|b) € D(J)} = {l,(l|b),(l|b'),b,b'}. However, this 
latter set is not a DCS with respect to <tr because it obviously also generates 0 
from b and b'. The same counter example also works for <v. See Table 3, 
DCSs #4, #5 and #11. Here again, as for <tr, the union of the principal DCSs 
generated by the conditionals in D(J) = {(1 |b), (l|b'), 1} is not a DCS.    • 

3.4.4. Lemma for deductive extension theorem. Let <A be any deductive relation 
in the hierarchy other than <lr or <v. If (q|p) <v (a|b) and (s|r) <v (c|d), then 
(q|p) A (s|r) <, (a|b) A (c|d). For x G {tr, V}, this is not necessarily true. 

Table 1 
Deductively closed sels of i#/£ = {0,b,W, 1, (0|b), (l|b), (0|b'), (l|b'j, U} with respect to the pie- 
orders (deductive relations) <ap> <ir• <ni. and <ip 

Preorders Nine conditionals of 38 10. b,b', 1} 

DCS # 1 b b' (lib) (Mb') 0 (0(b) (0|b') U 

<„P 1 
2 

G 
\ 

G 
+ 

G 
+ c; 

G 
t G 

3 + + + G + G 
4 4 + ^ + + t + + G 
5 + + + G 11 + G 11 

<u 1 
1 
3 
4 

+ 

+ G 

+ + 

G 

+ 

(i 

G G G G 

<   M, 1 
2 

1- 

G 
+ + + 

G 
+ 
G 

G + + + 
G 

3 + G i f (. + 
4 + G 4 + G + 

^ip 1 
2 
3 
4 

i. G G + 
G 

+ G + 
(. 

+ 

G 

i 

+ 
G 

Key. # - Numbered deductively closed set (DCS) for a pi colder; + - Included in the DCS of that 
row; G, 11 - Generators of the DCS of that row; one of each present in a row is required to generate 
that row. 
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Proof of Lemma 3.4.4. First a counter-example for x e {lr, Vj : Consider that 
(0|0) <v (0|l)and(l|l) <v (1|1). Now (0|0) A (1|1) = (1|1) and (0|1) A (1|1) = 
(0|1). But (1|1) <lr (0|1) is always false and so too is the stronger (1|1) <v 

(0|1). Concerning A- = ap, suppose (q|p) <ap (a|b) and (s|r) <ap (c|d). So p < b 
and r < d, and so p V r < b V d. Therefore 

(q|p) A (s|r) = (qpr' V p'sr V qpsr)|(p V r) 

<ap (abd' V b'cd V abcd)|(b v d) 

= (a|b)A(c|d). 

A similar argument with the inequalities reversed works for x = ip. Concerning 
x = nf, suppose that both (q|p) <nf (a|b) and (s|r) <nf (c|d). Then 

(q|p) A (s|r).= (qpr' V p'sr V qpsr)|(p V r) 

<nf (abd' V b'cd V abcd)|(b V d) 

= (a|b) A (c|d) 

since 

(qpr' V p'sr V qpsr) V (p V r)' = (qp V p')(sr V r') 

= (qVp')(sVr') < (avb')(cvd') 

= (abd' V b'cd V abed) V (b V d)'. 

That shows the result for x = nf. Since the result holds for x = nf and for x = ip, 
the result holds forx = A, which just combines these two elementary deductive 
relations. Now suppose the hypothesis holds for x = pm. So the four in- 
equalities (q Vp') < (aVb'),qp < ab, (s V r') < (cVd') and sr < cd hold. 
Again, the result holds for x — nf. Therefore, by the first part of the proof, the 
result holds for x = pm providing (qp)(s V r7) V (q V p')(sr) < (ab)(c V d') V 
(cd)(aVb'), and the latter easily follows from these four inequalities. The 
deductive relation <„,v is made up of the two elementary deductive relation <ap 

and <nf, for which the result holds. Therefore the result holds for <my The 
deductive relation <mA is just the conjunction of the two deductive relations 
<pm and <A for which the result holds. So it holds too for <mA. Similar 
statements can be made for x = ec and bo, or proved directly. That completes 
the proof of the lemma.    • 

It may seem at first disappointing that it is necessary to take every possible 
finite conjunction of the members of a given generating set J of conditionals in 
order to determine the deductive consequences of J with respect to most de- 
ductive relations. However this is required because the different conditions of 
the members of J need to be disjoined (Vj in all possible ways as they are when 
conditionals are conjoined or disjoined according to the operations. A single 
conditional, say the conjunction of all members of a finite set J, will have the 
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largest possible condition, the disjunction of all conditions appealing in the 
member of J, and so will generally miss the smaller conditions of the indi- 
vidual member of./. However, as proved in the next theorem, for three of the 
deductive relations this single conditional by itself generates the same DCS 
as /. 

3.4.5. Theorem on deductively closed sets of <„r, <ip and <A. The DCS with 
respect to <„r, <jp or <A generated by a finite set / is principal, and is generated 
by the conditional proposition {<x\(i)j defined by: 

(«|fl, =  A ("N. 
(a|b),€J 

This is not true for the other deductive relations in the hierarchy, and in fact, 
their finite DCSs are not in general principal. 

Proof of Theorem 3.4.5. Since /is a finite set of conditionals {(a|b),.}, it follows 
by repeated application of property (1) of Definition 3.1.5 that for all deductive 
relations <T, (a|b)7 is a conditional proposition in the DCS with respect to <v 

generated by /. Furthermore, for x in {nf, ip, A}, (a|/i), <t (a|b),., for all (a|b),. 
[For .r = nf, this follows from the fact that (a|b) A (c|d) = [(a V b')(c V d')| 
(b V d)], which is not false on (a V b')(c V d') V (b V d)' = (a V b')(c V d'), and 
(a V b')(c V d') < (a V b'). So(a|b) A (c|d) <„r (a|b). Repeated application then 
yields the result for x = nf. For x — ip, this result follows because conjunction 
of conditionals always yields a resulting conditional whose condition includes 
the conditions of all the components of the conjunction, and therefore this 
conjunction will imply each of the component conditionals with respect to 
x — ip. For x = A, by definition, the conjunction of conditionals implies with 
respect to <A the components of the conjunction. Alternately, since the de- 
fining properties of <A consist of the combined characteristics of <jP and <„i, it 
follows that <A too has the property.] So for A' = ip, nf or A, the principal DCS 
with respect to <x generated by (a|/i)^ includes all the conditional propositions 
of /. So with respect to <x, (cc\f3)j generates all the conditional propositions of/ 
and is generated by /. For the other deductive relations in the hierarchy, 
Section 4.3 will provide examples of non-principal DCSs, which therefore 
cannot be generated by any single conditional including (a\ji)r That completes 
the proof of Theorem 3.4.5.    • 

When a new conditional is adjoined to a collection of conditionals, or if two 
sets of conditionals are combined, the resulting collection has new deductions. 

3.4.6. Theorem on additional deductive information. For all deductive relations 
<x in the hierarchy except for x e {lr, v}, the deductively closed set generated 
by a DCS / and an additional conditional proposition (c|d) is the set of all 
conditionals implied with respect to <x by the conjunction of some conditional 
in / with the conditional (c|d). That is, 
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HX(J U {(c|d)}) = {(q|p) : 3(a|b) G J such that (a|b) A (c|d) <x (q|p)} 

and more generally, if AT is another DCS of conditional propositions with re- 
spect to <x,x 0 {tr, V} and in the hierarchy, then the DCS generated by the 
union of J and K is 

Hx(Jl)K) = {(q|p) : 3(a|b) e J and (c|d) e K such that (a|b) A (c|d) 

<v (q|p)} 

which is the set of conditionals implied with respect to <* by the conjunction of 
some conditional in J with some conditional from K. 

Proof of Theorem 3.4.6. HX(JL)K) is a DCS since if (q|p) eHx(JL)K) and 
(s|r) e HX{JLIK) then there are (a|b) e J and (c|d) £ K with (ajb) A (c|d) <, 
(q|p). Similarly there exist (e|f) € J and (g|h) e K with (e|f) A (g|h) <, (s|r). 
So by the Lemma of the Extension Theorem (a|b) A (c|d) A (e|f) A (g|h) <x 

(q|p) A (s|r). By the commutative law for conditionals this can be expressed as 
(a|b) A (e|f) A (c|d) A (g|h) <v (q|p) A (s|r), with (a|b) A (e|f) e J and (c|d) A 
(gjh) e K. So (q|p) A (s|r) e HX(J U K). That shows that HX(J U K) is closed 
under conjunction. Now suppose (q|p) e HX(J U K) and that (q|p) <x (s|r). So 
there are (a|b) e J and (c|d) G K with (a|b) A (c|d) <v (q|p). By transitivity it 
easily follows that (a|b) A (c|d) <t (s|r). So (s|r) € Hx(Jl)K). That completes 
the proof.    • 

By defining as usual (J AK) to be {(a|b) A (c|d) : (a|b) € J, (c|d) e K}, it 
follows that for all deductive relations <x in the hierarchy except x € {tr, V}, 
(J \J K) C (J A K) <Z HX(J U K), for DCSs J and K, but the equalities may not 
hold. The deductively closed set generated by the union of two DCSs can be 
something more than the simple conjunction of the conditionals of one DCS 
with those of the other DCS. This simple conjunction may not be a DCS. Here 
again, there is a difference between the situation for conditional propositions 
and the situation for Boolean propositions. In the Boolean case, J A K = 
llx(.l UK) always holds. But even in the Boolean case the conjunction J AK 
of two DCSs can be larger than the simple union (J U K) of the component 
DCSs. 

3.4.7. Non-elementary examples of deductively closed sets. With Theorem 3.4.6 
it is easy to specify many non-elementary examples of DCSs with respect to 
various deductive relations. 

For instance, suppose J = {(a|b), (b|c)} has two conditionals and we 
want the DCS with respect to <A, generated by J. By Theorem 3.4.5 all DCSs 
with respect to <A are principal and the generating conditional in this case 
is the conjunction of the members of 7, namely, (a|b) A (b|c) = (ab|(b V c)). So 
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//A(J)=//A(ab|(bVc)) 

= {((ab)(bVc)Vx)|>'(bVc) : any x,y in 0$} 

= {((ab Vx)\y{b VcJJ : any x,y in <#} 

= {(ab Vx|yb Vyc) : any x,y in 3S). 

But if instead we wish to determine the DCS with respect to <pm generated 
by J = {(a|b), (b|c)}, that is the <pm-implications of/, then we must first form 
D(J) = {(a|b), (c|d), (ab|(b Vc))} and then take the union of the principal 
DCSs generated by the members of D{J). So Hpm(J) = //pm(a|b) U//pm 

(c|d) U//pm(ab|(b Vc)). Each of these three DCSs could be expressed as in- 
tersections of DCSs with respect to more elementary deductive relations since 
in general, //xny(a|b) = Hx(a\b) n//y(a|b). But more directly, using the results 
of Section 3.4.2.2 it follows that //pm(a|b) C //pm(ab|(b V c)), and so 

Hpm(J) = //pra(c|d) U//pm(ab|(b V c)) 

= {(cd V d' Vx|cd V y) : any x,y in 'M) 

U {(ab V b'c' V vv|ab V z) : any w,z in 9$}. 

Note that since (a|b) <pm (c|d) for any (c|d) in //pm(a|b), the probabilistic 
monotonicity of <pm means that /^(a|b) is a lower bound on the probabilities of 
the conditionals in //pm(a|b). 

3.4.8. Applications of the deductive relations. We are used to making Boolean 
deductions in essentially one way. We show "A implies B" by showing that 
event A is a subset of event B, that every instance of A is an instance of B. But 
conditionals have two components, which complicates things, and results in 
several different kinds of implication, each good for a different purpose de- 
pending upon what properties one wants to imply in a deduced conditional. It 
may be that one wishes to imply the simple truth of one conditional (c|d) from 
another one (a|b), in which case, the deductive relation <lr would be appro- 
priate. One could then conclude that P(ab) < P{c<\). If on the other hand one 
wishes to deduce the non-falsity of one conditional from another, then <nf 

would be the appropriate deductive relation. Every instance of (a|b) being true 
or inapplicable is an instance of (c|d) being true or inapplicable, and no matter 
what, P(a V b') < P(c V d') for the two conditionals. This implication would 
be appropriate if one wished just to preserve Boolean non-falsity for logi- 
cal purposes but was not concerned about the conditional probability of 
the conditionals when they were partially false. The implication <pm combines 
the defining characteristics of <[r and <nf so that both characteristics must 
be true for the implication to hold, in which case it follows that /J(a|b) < 
P(c|d). If instead of conditional probability, one wishes to have that (a|b)A 
(c|d) = (a|b) whenever (a|b) implies (c|d), as is always true in Boolean algebra, 
then one would use the deductive relation  <A. Then one could only say 
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that P(aVb') < /J(c Vd') and that P{b') < /J(d'). On the other hand, if one 
wishes to have the properly (a|b) V (c|d) = (c|d) whenever (a|b) implies (c|d), 
as is always true in (unconditioned) Boolean algebra, then <v would be ap- 
propriate combining the characteristic of <tr with that of <ap and then it would 
also follow that P(ab) < P(cd) and P(b) < P(d). At the expense of another 
requirement for the deduction of (c|d) by (a|b), one can have the advantages of 
<pm combined with those of <A in <mA, or the advantages of <pm combined 
with those of <v in <mV. 

3.4.9. The penguin problem. It has become traditional to see how theoretical 
results can be applied to the following problem: "birds fly", "penguins are 
birds", and "penguins don't fly". What are the implications of these three 
statements with respect to the various deductive relations? 

Representing these three conditionals as (F|B),(B|p) and (F'|p), respec- 
tively, then J = {(F|B), (B|p), (F'|p)}, and the conjunctive closure 

D(J) = {(F|B),(B|p),(F'|p),(F|B)(B|p),(B|p)(F'|p),(F|B)(F'|p):(F|B)(B|p)(F'|p)} 
= {(F|B),(B|p),(F'|p),(BF|BVp),(BF'|p),(BFp'vB'F'p|BVp),(BFp'|BVp)}. 

By Theorem 3.4.5, for x = ip, nf or /\,HX(J) = //v((F|B)(B|p)(F'|p)) = 
//t(BFp'|B V p). So //ip(BFp'|B V p) = {(x|(B V p)y): any x,y € 38}. That is, the 
DCS with respect to <ip generated by J is the set of all conditionals whose 
condition is a subset of (B V p). Similarly, 

//,„•(./) =//nl-(BFp'|BVp) 

= {(BFp V (B V p)' Vx\y) : any x,y e 38} 

= {(FVB')p'VJCb):anyx,jeB}, 

which is the set of all conditionals whose conclusion is a superset of (F V B')p', 
which is (F'B Vp)', the negation of a penguin or non-flying bird. Similarly, 

//A(J) = 7/A(BFp'|B V p) - {(BFp' Vx|(B V p)y) : any x,y e 08}, 

the set of all conditionals whose condition is a subset of (BVp), the birds or 
penguins, and whose conclusion is a superset of BFp', the non-penguin flying 
birds. 

If by definition every penguin is a bird, that is, if p<B, then (BVp) = B, and 
simplifications yield that 

//„,(./) = {(x|By) :-dnyx,ye:M}, 

Haf{J) = {(Fp' VB'V x\y) : any x,y £ 08}    and 

HA(J) = {(BFp' Vx|By) : any x,y e 38}. 

Concerning the other deductive relations, except for x = V or x — tr, by the 
(Corollary to Theorem 3.4.3 
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HX{J) = ffx(F|B) U //,(B|p) U //,(F'|p) U /YV(BF|B V p) U //v(BF'|p) 

U//,(BFp' V B'F'p|B V p) U//,(BFp'|B V p). 

But some of these include the others: 
For all non-trivial deductive relations <v in the hierarchy, (BF'|p) <v (B|p) 

and (BF'|p) <X (F'|p). (This can also be stated in terms of the Boolean de- 
duction relation <bo at the top of the hierarchy.) So //v(BF'|p) I>//,(B|p)U 
#,(F'|p). Furthermore, for all such <,, (BFp'|B V p) <x (BF|B V p) and (BFp'| 
B V p) <x BFp' V B'F'p|B V p). So 

//t(BFp'|B V p) D HX{BF\B V p) U //.v(BFp' V B'F'p|B V p). 

Therefore, for all deductive relations <x, other than <tr or <v, 

HX(J) = //,(F|B) U //,(BFp'|B V p) U //,(BF'|p). 

Let ,\ = pm. Then (BFp'|BVp) <x (F|B) by direct application of the defi- 
nition of <pm in terms of <lr and <„r. So //V(F|B) C 7/v(BFp'|B V p) and 
therefore 

Hm{J) = Hpm(BFp'\B V p) U//pm(BF'|p) 

= {((BF V B')p' V .v|BFp' V y) : any x,y e 38} 

U {(BF'p V p' Vx|BF'p V^) : any x,y e M). 

If p < B, then 

•Wpm(^) = {((BFP' v B' Vx|BFp' Vy) : any x,y £ W} 

U {(F'p V p' Vx|F'p V y) : any x,y £ 36}. 

So Hpm(J) consists of all conditionals whose condition includes the flying non- 
penguin birds and whose conclusion includes the flying non-penguin plus the 
non-birds together with all conditionals whose condition includes the non- 
flying penguins and whose conclusion includes (Fp)', the complement of the 
flying penguins. 

Let x = mA. Since (BFp'|B V p) <ip (F|B) and (BFp'|B V p) <pm (F|B), 
therefore (BFp'|B V p) <mA (F|B). So 

HmA(J) = //mA(BFp'|B V p) U //„lA(BFp'|p) 

= {(BFp' V.v||BFp' V (B V p);>) : any x,y £ M] 

U {(BF'p Vx|BF'p V yp) : any x,y £ 2d). 

If p < B, then 

HX(J) = {(BFp' V jc||BFp' V   By ) : any x,y 6 &} 

U {(F'p Vx| F 'p V yp) : any x,y £ S). 

So the implications of J with respect to <mr are all conditionals whose con- 
dition is between BFp' and B. and whose conclusion includes BFp' together 
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with all conditionals whose condition is between F'p and p, and whose con- 
clusion includes F'p. 

Let x = mV. In this case there is no immediate further simplification. So 

//„1A(J) = //mA(F|B) U/YmA(BFp'|B V p) u//mA(BFp'|p), 

and as above these can be solved using the results of Section 3.4.2.2. If p < B, 
then (BFp'|B V p) <bo (F|B) and so also (BFp'|B V p) <inA (F|B). So 

Hm^{J) = //mA(BFp'|B V p) U //mA(BFp'|p) 

= {(BFp' V B' Vx|B Vy) : any x,y <= iM} 

U{(F'pVp' Vx|pV.y) : any x,ye 28). 

So HmA(J) is the .set of all conditionals whose condition includes the birds 
and whose conclusion includes BFp' V B', the non-birds plus the flying non- 
penguins, together with all conditionals whose condition includes the pen- 
guins and whose conclusion includes F'p V p', the complement of the flying 
penguins. 

Let x = ap. Since (F|B) <ap (BFp'|B Vp), therefore //ap(BFp'|B V p) C Hap 

(F|B) and so 7/ap(J) = //ap(F|B) U//ap(BF'|p). This is all conditionals whose 
condition is either a superset of B or of p. 

Let x = bo. So again by the results of Section 3.4.2.2, 

Hho(J) = {(FB  Vx|B) : any x £ M) 

U {(BFp' Vx|B V p) : any x e 28} 

U{(BF'Vx|p) : any i € f}. 

If p < B, then 

//bo(J) = {(BFp' V JC|B) : any x e 28} U {(pF' Vx|p) : any x G 2$}. 

That is, the Boolean implications of J are all conditionals whose condition is B, 
the birds, and whose conclusion is a superset of the flying non-penguins plus all 
conditionals whose condition is p, the penguins, and whose conclusion is a 
superset of the non-flying penguins. In other words, the implications are the 
conditionals "if a bird then all events that include flying non-penguins" to- 
gether with "if a penguin then all events that include the non-flyers". 

Let x = tr. So 

Hlt{J) = //„{(F|B), (BFp'|B V p), (BF'lp)}. 

Since (BFp'|B V p) <lr (F|B), therefore HU{J) = //u{(BFp'|B V p), (BF'|p)}. 
Since HU(J) must include the principal DCSs generated by (BFp'|B V p) and 

(BF'|p),/Ylr(J)DMr(BFp'|BVP)U//lr(BF'|p). 
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So 
IhAJ) 2 {(BFp' V jc|BFp' \ly) : any x,y G iti) 

U {(BF'p V x|BF'p Vy) : any x,y e 'M). 

//t,(7) must therefore contain the conjunction of any two conditionals from the 
latter two sets of conditionals. Setting x = 0 and y=\ in both sets, HU(J) 
therefore includes the conditional (BFp'|l) A (BF'p|l) = (BFp'A BF'p|l) = 
(0|1) = 0. But then HU(J) includes all conditionals because (0|1) <u (e|f) for 
any conditional (e|f). Thus with respect to <ir, J generates all conditionals and 
so implies a contradiction. (It can be shown that //tr{(a|b)} always includes the 
unconditioned event (ab) and so //lr{(a|b), (c|d)} always includes the uncon- 
ditioned event (ab)(cd).) 

Let x = V. So 

Hv(J) = HV{(F\B), (BFp'|B V p), (BF'|p)}. 

Since (F|B) A (BF'|p) = (BFp'|B Vp), the latter conditional is in the DCS 
generated by the other two conditionals. So 

yyv(j) = //v{(F|B),(BF'|P)} 

D {(BFVA-|BVy) :anyx,y€ 36} 

U{(BF'pVw|p Vz) : any w,z £ S). 

Letting y = p, z = B, and x = 0 = w, yields that HV(J) includes both (BF|B V p) 
and (BF'p|p V B) and so also their conjunction (0|B V p). Thus all conditional 
events whose condition is a superset of (B V p) are included in HV(J) because 
(0|B V p) <v (e|B V p V f) for any e and f. So J implies a contradiction with 
respect to the deductive relation <v whenever the conditions include all the 
birds and penguins, B V p. Yet a explicit characterization of the DCS with 
respect to <v generated by {(F|B), (BF'|p)} is still an open question. 

4. Elementary examples of finite deductively closed sets of conditionals with 
respect to deductive relations 

The simplest examples of deductively closed sets of conditionals with respect 
to various deductive relations are based on the simplest Boolean algebras <M 
having the smallest number of atoms. Here is a start of an exhaustive list of all 
DCSs of the simplest conditional Boolean algebras PAjPJS. Though simple, they 
nevertheless have already provided useful examples and counter examples. 

4.1. Generating .set :'M with zero atoms 

Only the zero element, 0, has no atoms. There is one proposition, {0} and 
one conditional ({0}|{0}), abbreviated 0 and (0|0), respectively, the latter also 
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denoted U. (Strictly speaking a Boolean algebra M must have at least two 
members.) 

4.2. Generating with a Boolean algebra .!fi with one atom 

The 2-element Boolean algebra {0,1}. Two propositions, {{0}, and {1}}, 
usually abbreviated as 0 and 1. Three conditionals: SS/m = {(0| 1). (1 jI), and 
(1|0)}, where (0|0) = (1 JO). These are usually abbreviated 0, 1, U, with U in- 
terpreted as "inapplicable" or "undefined". 

4.2.1. Deductive relation <ap 

Since the conditional propositions 0 and 1 are applicability equivalent, that 
is, since (0 =ap 1), they generate the same deductively closed set, namely 
ffap(0) = 7/.p(l) = {(x\y) : (0|1) <ap (x\y)} = {(x\y) : 1 < y) = {0, 1}. The con- 
ditional U generates its own DCS, MiP(U) since U is applicability equivalent 
only to itself: 

M,P(U) = {(x\y) : (1|0) <ap (x\y)} = {(x\y) : 0 <>>} = {0,1,U} = 06/39. 

4.2.2. Deductive relation <ip 

Since (0 =,p 1) holds and U is inapplicability equivalent only to itself, pre- 
order <ip has the same generators as does preorder <ap. Two conditional 
propositions are equivalent in applicability or inapplicability if and only if they 
have equivalent conditions. But <ap and <ip generate different DCSs: 

tfip(i) = {{Ay) •• (i|i) <iP {Ay)} = {Wi-y< U = {o, i,u} = aim. 
MP(U) = {{x\y) : (1|0) <jp {x\y)} = {(x\y) : y < 0} = {U}. 

4.2.3. Deductive relation <n) 

Since (1 =nf U), U and 1 generate the same DCS, namely //„r(l) = 
//nf(U) = {l,U}: 

^nf(O) = {(x|y) : (0|1) <„f {x\y)} 

= {Wy):0<xV;/} 

= {0,1,U}. 

4.2.4. Deductive relation <„. 
Since (0 =t, U), 0 and U generate the same DCS, namely 

/A,(0j = y/u(U) = {(x\y) : (0|1) <„ (x\y)\ = {(x\y) : 0 < xy) = 0S/36 = {0,1, U], 

//„(1) = {{x\y) : (1|1) <tr (x\y)} = {{x\y) : 1 < xy} = {]}. 

So the atom 1 generates its own singleton DCS. 
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Thus in summary concerning the elementary preorders, //ap(0) = //ap(l) = 
{0,1} and with respect to <ap botli 0 and 1 are generators. U generates .••#/ 'A. 
^ip(U) = {U} while with respect to <ip both 0 and 1 generate m/m. //„r(l) = 
//„r(U) = {!,£/} while 0 generates M/M. Hu{\) = {1} while both 0 and U 
generate 38/38. 

Concerning the combinations of elementary deductions, the Conjunction 
Theorem 3.3.1 for deductive relations allows us to determine most of the DCSs 
in the hierarchy by simply taking the intersection of DCSs generated by the 
individual elementary preorders or generated by the constituent deductive re- 
lations. The others were determined by the Deductive Extension Theorem, or 
in the case of <ap and <v, by brute force. 

The DCSs of Conditionals for the 3-element Conditional Event Algebra 
<#/<£= {(0|1),(1|1),(1|0)} = {0, 1,U} with respect to the combination de- 
ductive relations are as follows: 

4.2.5. Deductive relation <ec 

By the Conjunction Theorem for deductive relations of Section 3.3.1, 

Hec(i) = Hapnip(i)=Htip(i)nHip(i) = {o,i}nm/m = {o,i}, 
ff.Pn,p(0) = tf.p(0) n//ip(0) = //ap(i) n//ip(i) = {o, l}, 
tfaPnip(U) = ftp(U) ni/ip(U) = m/m n {u} = {u}. 

So <ec generates three deductively closed sets including the whole space 38/'38. 
Furthermore, with respect to <cc, 38/38 is already a finite, non-principal DCS 
since it is not generated by a single conditional but instead requires U and 
either 0 or 1. This is another difference from the finite Boolean situation, where 
all finite DCSs are principal. 

4.2.6. Deductive relation <v 

Using the Conjunction Theorem for deductive relations, <v = <aPnu- So 

//v(l)=//ap(l)n#u(l) = {0,l}n{l} = {i}, 

tfv(0) = //ap(0) n //lr(0) - {o, l} n {0 J, u} = {0, l}, 
//V(U) =//.p(u)n#lr(U) = {o,i,t/}n{o,i,u} = m/m. 

4.2.7. Deductive relation <,, 

/-/A(lj=//„l,np(l)^//„i(ljri//,p(lj-{l,Ujfi{0!l,U} = {KU}) 

//A(U) -//..rnipCU) -//,„•(u)ny/,p(Uj = {i,u}n{U} = {U}, 
//„fnip(0) = //„,(o) n //,p(o) = {o, i, u} n {0, l, u} = {o, i, u} = m/m. 
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4.2.8. Deductive relation <pm 

tfpm(l) = tftrnnf(l) = H^l) (1 Ha[(l) = {1} 0 {1, U) = {1}, 

//pm(0) = //trnnf(O) = /Ytr(0) n//„r(0) = {0, l,U) n {0,1,£/} = B/B, 

//pm(U) = //lrn„f(U) = //lr(u) n//nr(U) = {0, l, t/} n{i,c/} = {l, u}. 

4.2.9. Deductive relation <mV 

tfmv(i) =//pm(i) n//v(i) = {1} n{i} = {1}, 

//m v (0) = //pm(0) n//v(0) = {0, i,u} n {0,1} = {0,1}, 

//mv(U) =//pm(U)n//v(U) = {1,U} n {0,1,U} = {1,U}. 

Since any single one of its elements does not generate 88/98, 38/2S is a non- 
principal DDS with respect to <mV generated by 0 and U. 

4.2.10. Deductive relation <mA 

SmA = SpmflA-  SO 

ff«A(l)=JWl)n#A(i) = {i}n{i,u} = {i}, 
//mA(o) = //pm(o) n #A(0) = {o, i,u> n {o, i.u} = {o, l, u}, 
iy-A(U) = //pm(u) n//A(U) = {i,U} n {U} = {U}. 

In addition //mA{l, U} = Hpm{\, U} n//A{l, U} = {1, U} n {1, U} = {1, U}. 
That is, {l,U}is a non-principal DCS with respect to <mA since it requires two 
propositions to generate it. 

4.2.11. Deductive relation <t,0 

The Boolean deductive relation <bo= <ecmr- So 

//bo(i) = /W(l) = -Wec(i) n//lr(i) = {0,1} n {1} = {l}, 

as expected. 

^bo(O) = //«cntr(0) = tfec(o) ri/y,,(0) - {o, 1} n {o, i,u} = {o, l}, 

also as expected. //bo(U) = {U} since only U has 0 condition. Finally, 

/ybo{i,u}=//cc{i,u}n//lr{i,uj = {o,i,u}n{o,i,u) = {0,1,u} 

= 98/98. 

4.2.12. Deductive relation <i 
Only equal conditionals satisfy <i and so the DCSs with respect to <: are 

just the equivalence classes of equal conditionals, namely {0}, {1] and {Uj 
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each generated by its single conditional. The subsets (0,1}, -{0.U} and {1,U} 
are also DCSs since the conjunction of any two of the three conditionals 0, 1, 
or U gives back one of the two components. So these subsets are: closed under 
conjunction and they have only themselves as deductions with respect to <i. 
The whole space {0,1,U} is also a DCS requiring all three of its conditionals to 
generate it. 

4.2.13. Deductive relations <0 

All conditionals are deducible from any one conditional with respect to <0. 
So there is just one DCS with respect to <0, namely the whole spaioe {0, 1, U} 
and it is generated by any of its members. This is true no matter what the 
original Boolean algebra 88. This completes the deductively closed sets of 
conditionals of 88138 = {0,1,U} with respect to the 13 dlediictLvie relations 
identified in the hierarchy. They are listed in the tables below. G"s und H's are 
generators of that column, one of each present is required; •+ indicates inclusion 
in the DCS of that column; J's are joint generators, all required.. 

It is not so remarkable that all 13 of these preorders yield different collec- 
tions of DDSs for this simplest case since even the 3-elenient Condi tional Logic 
981& = {1,0,U} has eight subsets. Each deductive relation deteimi ines which 
of these 8 subsets will form a deductively closed set with respect too iit. So there 
are potentially 28 = 256 different possible choices of a subset of tie 8 to be a 
DCS. These are subsets of subsets of the three original con-ditiouials - the so- 
called second order predicates. 

—ap <t <nf <« <ec <v _ptib <A 

1 G   + + G G     + G G G G + + G f +• •G + 

0 G   + G G G G G G +• G G 

u G G G   + + G G H G f G -+ G + 

^rav ^mA <i <o 

1 G   + i -i G   + .1 G   + J G J J J G 

0 G J G G + G J J J G 

u G J + G J G J G J J J G 

4.3. Generating with a Boolean algebra 85 with two atoms 

A Boolean algebra 3& with two atoms is of the form :W = {0, ta,Ib', 1} gen- 
erated by a single non-trivial event b. There arc nine conditiuuals generated by 
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,^/^={(0|l),(bH)J(b'|l),(l|l)I(0|b),(l|b),(0|b'),(l|b'),(0|0)} 
= {0,b,b',l,(0|b),(l|b),(0|b'),(l|b'),U}. 

There are 29 = 512 different subsets of 0&J9S, and a particular deductive rela- 
tion will make some collection of these subsets a DCS with respect to it. There 
are therefore 2512 different collections of subsets of conditionals that are can- 
didates for being the set of all DCSs generated by a given deductive relation, 
and that is just for the 4-Element Boolean algebra. Information is indeed 
complex! 

4.3.1. The four elementary deductive relations <ap, <tr, <nf, and <jp 

The DCSs in Table 1 are determined by methods similar to those used 
to determine the DCSs of the 2-element Boolean algebra. For example, for 
the preorder <„f the conditional (b|l), which is b, generates the DCS 
//„r(b) = {{x\y) : b V 1' <x Vy> = {{x\y) : b < xVy'}. Uy = 0, then b<jcVy 
is satisfied. So (0|0) is in //„r(b). If y = b', then the inequality is also satisfied for 
any x. So (0|b') and (l|b') are also in //„r(b). If y = b then the inequality is 
satisfied if and only if b < x. So (l|b) is in//nf(b). Finally, ify = 1, then again b 
< x, and so (1|1) is in Hnf(b). So in Table 1 all of the conditionals of DCS #3 
under the deductive relation <nf have been shown to be in //nf(b), the DCS 
with respect to <„r generated by b. Now //„r(0|b') = H„((b) since the same 
inequality shows up. That is, Hn[{0\b') = {{x\y) : 0 V (b')' < x V/} = {(x\y) : 
b < x V/}. So (0|b') generates the same DCS. Similar examination of the other 
conditionals generated by b with respect to <nf yields no new conditionals. For 
instance, (l|b) generates all unity events (\\y) for any y, but they are already 
included. In fact, (l|b) generates DCS #2, which is a subsystem of DCS #3 
of preorder <nf. 

Having determined the DCSs for the elementary preorders, the DCSs for the 
combination preorders can be determined with the help of the Conjunction 
Theorem for Deductively Closed Sets with respect to two preorders. For ex- 
ample, using the table, one DCS with respect to <pm, which is <lrrmr, is de- 
termined by intersecting the conditionals in DCS #3 of <lr with those in DCS 
#4 of <nf. The result is {1, (l|b)}, the DCS with respect to <pm generated by 
(l|b). 

In fact, since the whole space S8/9S is a DCS with respect to any combined 
preorder, a DCS with respect to one of its component preorders will also be a 
DCS with respect to the combined preorder by intersection of the DCS with 
the whole space. This common DCS may in general have different generators 
with respect to the two preorders, and so they have been included in the tables 
below. 

However, some DCSs, like #11 below of preorder <v are not the intersec- 
tion of DCSs of more elementary preorders. They were determined with the 
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Table 2 
Deductively closed sets of 
ductive relation <_. 

Mj:li = {0,b,b', l,(0|b),(l|b),(0|b'),(l|b'),U} with respect to the de- 

DCS Nine conditionals of M = {0 b,b'. 1} 

# 1 b b' (lib) (Mb') 0 (0|b) (0|b') U 

Condition: 1 1 G G G G 
Cond: b 2 H II 
b' 3 k K 
0 4 1. 
Conds: l,b 5 G G G li G II 
l.b' 6 (i G G K G K 
1,0 7 G Ci G G 1. 
b,b',l 8 + + + 11 K + II K 
b,0 9 11 11 1. 
b',0 10 K K 1. 
b,b',0,l 11 + + + H K + H K L 

Key. # - Numbered deductively closed sets (DCSs) of the Deductive relation; + - Included in the 
DCS of that row; G, H, K, L - Generators of the DCS of that row; one of each present in a row is 
required to generate that row. 

Table 3 
Deductively closed sets of :'4/'M 
ductive relation <v 

{0,b,b',l,(0|b),(l|b),(0|b'),(l|b'),U} with respect to the de- 

DCS Nine conditionals of 3$ = {0, b, b', 1} 

# 1 b b' (l|b) 01b') 0 (0|b) (0|b') U 

1 G 
2 + G 
3 + G 
4 t + (, 
5 -i + G 
6 + + i G 
7 + + + + i G 
8 + + i + + G 
') + + + ^ 4 + + + G 
10 + ^ + + 4 + J .1 
II + + + .1 .1 + 

12 i II -t (, 11 
13 + t II (i II 
14 -t + t J + + .1 
15 + + + + J + J 

Key. # - Numbered deductively closed sets (DCSs) for a preorder; + - Conditional included in the 
DCS of that numbered row; G - Generator of the DCS of that row; any G; J - Joint generators; all 
conditionals with J required. 
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Table 4 
Deductively closed sets of £/£= {0,b,b', I, (0|b), (l|b),(u|b'),(l|b'), U} with respect to the pre- 
order <p„, 

DCS Nine conditionals of 91 = {0, b, b', 1} 

# 1 b b' (Mb) (l|b') 0 (0|b) (<Hi/) u 
1 G 
2 + G + 
3 t G + 
4 + G 
5 + G 
6 + + + + t G + 4 * 
7 + + + + G + 
8 + + + + G + 

9 + + + G 
10 + J J 
11 + J + .1 
12 + J J + 
13 + .1 + + .1 
14 + J + + J 

Key. U - Numbered deductively closed sets (DCSs) for a preorder; + - Conditional included in the 
DCS of that numbered row; G -Generator of the DCS of that row; any G; J -Joint generators; all 
conditionals with J required. 

Table 5 
Deductively closed sets of 9S/9f = {0,b,b', l,(0|b),(l|b),(0|b'),(l|b'),U} with respect to the de- 
ductive relation <A 

DCS Nine conditionals of & = {0, b, b', 1} 

# 1 b b' (l|b)      (l|b')     0 (0|b)      (0|b')     U 

1 G 
2 + G 
3 + G 
4 

5 
6 + + + 
7 

Key. U - Numbered deductively closed sets (DCSs) for a preorder; + - Conditional included in the 
DCS of that numbered row; G - Generator of the DCS of that row. 

help of the Theorem on Additional Deductive Information and previously 
determined principal DCSs. 

4.3.2. The compound deductive relations (preorders) 
Using the methods just illustrated the DCSs of the other preorders in the 

hierarchy were determined and are listed in the following tables: 

+ + + 
+ + + + 
+ + 4 t 

G 
Ci 

+ 
4 

4 4 G + + 4 

4 

i 

G 
G 

+ 
1 

G 
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(a) Deductive relation <K (see Table 2). 
(b) Deductive relation <v (see Table 3). 
(c) Deductive relation <pm (see Table 4). 
(d) Deductive relation <A (see Table 5). 
(e) Deductive relation <mV (see Table 6). 
(0 Deductive relation <mA (See Table 7). 

Table 6 
Deductively closed sets of 9t/M = {0,6,b', 1, (0|b), (l|b), (0|b'),(l|b'), U] with respect to the pre- 
order <„„ 

DCS      Nine conditionals of M = {0,b,b ,1} 

# 1 b b' (Mb) (Mb') 0 (0|b) (on/) U 

1 G 
2 + G 
3 + i> 

4 + (1 
5 + c, 

(. + + + Cl 
7 + + + (. 
S + -i + G 
9 + + + G 

10 + + + + J J 
11 + J J 
12 + + + i .1 .1 
13 + .1 J 
14 + + 4 + t- + J J J 
15 + + + + J .1 
16 + • + + J .1 
17 + + + + -t- + .1 J 
18 + .1 J 
19 + + J -t J 
20 + + + .1 
21 + * + J J 
22 + .1 J 
^ + .1 J 
24 + + + .! 
25 + + + J J 
26 + J J 
27 + .1 J 
28 + J + i .1 

29 + J + + .1 
}0 + + + + + J J 
31 + + + + J J J 
32 + + + J i J J 

Key. # - Numbered deductively closed sets (DCSs) for a preorder; + Conditional included in the 
DCS of that numbered row; G - Generator of the DCS of that row; J Joint generators; all 
conditionals with J required. 
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Table 7 
Deductively closed sets of 3S/M = {0,b,b', l,(0|b), (l|b),(0|b'), (l|b'),  U} with respect to the de- 
ductive relation <mA 

DCS       Nine conditionals of m = {0, b, b', 1} 

# 1 b b' (l|b)      (l|b')     0 (0|b)      (0|b')       U 

1 G 
2 + 

3 + 
4 

5 
6 + 

7 
8 
9 
10 J 
II .1 
12 .1 
13 .1 
14 + 

15 + 

16 + 

17 + 

18 + 

19 + 

20 i 

21 t 

22 
23 
24 J 
25 + 

26 -t 

+            + G           +            +              + 
+ G                             + 

+ G             + 
G 

J 
J 
+ J              + 

+ J                            + 
+ J 

J J + 
G + 

G + G 
J J 
J J 
+ J 

J J + 
J 

.1 

Key. # - Numbered deductively closed sets (DCSs) for a preorder; + - Conditional included in the 
DCS of that numbered row; G, H Generators of the DCS of that row; one of each present in a 
row is required to generate that row; J - Joint generators; all conditionals with J required. 

5. Summary 

Boolean Deduction is simply inclusion of one uncertain event by another, 
but deduction between conditional events, pairs of events, is driven by the four 
chosen operations of "not" (negation), "or" (addition), "and" (multiplication) 
and "given" (division), which were extensively analyzed and justified in Sec- 
tions 2.2 and 2.3. Using these operations to define deduction in the ways that 
are equivalent for Boolean deduction results in non-equivalent implication 
relations in the realm of conditionals. These implications form a hierarchy of 
eleven built upon some subset of four elementary ones. The deductively closed 
sets (DCS) of conditionals generated by the different deductive relations have 
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been determined. For a single conditional (a|b), the principal DCS generated is 
just the set of all conditionals implied by (a|b) with respect to the deductive 
relation. Matters are much more complicated when there are two or more 
generators. For three of the deductive relations, the DCS generated by a iinile 
set J of conditionals is principal and generated by the conjunction of all 
members of J. Except for two of the other deductive relations, the DCS gen- 
erated by J is the union of the principal DCSs of the set D(J) of all finite 
conjunctions of members of J. But for the remaining two deductive relations, 
this union is not necessarily a DCS. The principal DCSs are explicitly solved 
for all deductive relations. The results are applied to the famous penguin 
problem: "Birds fly", "Penguins are birds", and "Penguins don't fly" to de- 
termine the DCSs of this set of three conditionals with respect to the various 
types of implications. A final section provides the complete collection of DCSs 
with respect to all deductive relations for the conditional event algebra gen- 
erated by the two-element Boolean algebra {0,1} and also by the 4-clemcnt 
Boolean algebra {0, b,b', 1}. These DCSs provide some concrete finite exam- 
ples and counter-examples by which to view the sometimes surprising results 
presented above concerning deduction with uncertain conditionals. 
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